首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3222篇
  免费   219篇
  2024年   3篇
  2023年   26篇
  2022年   20篇
  2021年   100篇
  2020年   61篇
  2019年   74篇
  2018年   98篇
  2017年   93篇
  2016年   124篇
  2015年   214篇
  2014年   211篇
  2013年   270篇
  2012年   318篇
  2011年   298篇
  2010年   193篇
  2009年   162篇
  2008年   198篇
  2007年   171篇
  2006年   150篇
  2005年   133篇
  2004年   126篇
  2003年   92篇
  2002年   61篇
  2001年   18篇
  2000年   23篇
  1999年   26篇
  1998年   20篇
  1997年   17篇
  1996年   10篇
  1995年   4篇
  1994年   14篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   4篇
  1974年   5篇
  1973年   5篇
  1969年   3篇
排序方式: 共有3441条查询结果,搜索用时 31 毫秒
991.
Occupational exposure to photocopiers has been indicated as being responsible for a number of health complaints, particularly effects on the respiratory, immunological, and nervous systems. In this study, we investigated oxidative and genotoxic damage in photocopier operators by assessing catalase activity (CAT), reduced vs. oxidized glutathione ratio (GSH/GSSG), level of lipid peroxidation (TBARS), damage index by Comet assay (DICA), and buccal cells with micronuclei (BCMN). Our results reveal that the TBARS levels in operators were increased (27%; p<0.05) but that no significant alterations to GSH/GSSG or CAT activity were observed. The DICA and the number of BCMN were significantly increased (134% and 100%, respectively; p<0.05) in the exposed group. There was a significant association between the time in months spent at work and DNA damage in lymphocytes (r(s)?=?0.720; p<0.001) and buccal cell with MN (r(s)?=?0.538; p<0.001). Because laser printers and photocopiers have become increasingly used, it is important to control human exposure using reliable biomarkers.  相似文献   
992.
The identity of biochemical players which underpin the commitment of CD34(+) hematopoietic stem cells to immunogenic or tolerogenic dendritic cells is largely unknown. To explore this issue, we employed a previously established cell-based system amenable to shift dendritic cell differentiation from the immunogenic into the tolerogenic pathway upon supplementation with a conventional cytokine cocktail containing thrombopoietin (TPO) and IL-16. We show that stringent regulation of cathepsins S and D, two proteases involved in antigen presentation, is crucial to engage cell commitment to either route. In response to TPO+IL-16-dependent signaling, both cathepsins undergo earlier maturation and down-regulation. Additionally, cystatin C orchestrates cathepsin S expression through a tight but reversible interaction that, based on a screen of adult stem cells from disparate origins, CD14(+) cells, primary fibroblasts and the MCF7 cell line, appears unique to CD34(+) stem cells from peripheral and cord blood. As shown by CD4(+) T cell proliferation in mixed-lymphocyte reactions, cell commitment to either pathway is disrupted upon cathepsin knockdown by RNAi. Surprisingly, similar effects were also observed upon gene overexpression, which prompts atypically accelerated maturation of cathepsins S and D in cells of the immunogenic pathway, similar to the tolerogenic route. Furthermore, RNAi studies revealed that cystatin C is a proteolytic target of cathepsin D and has a direct, causal impact on cell differentiation. Together, these findings uncover a novel biochemical cluster that is subject to time-controlled and rigorously balanced expression to mediate specific stem cell commitment at the crossroads towards tolerance or immunity.  相似文献   
993.
The inhibition of mevalonate pathway by the aminobisphosphonate alendronate (ALD) has been previously associated with an augmented lipopolysaccharide-induced interleukin-1beta (IL-1β) secretion in monocytes, as demonstrated in an auto-inflammatory disease known as mevalonate kinase deficiency (MKD). In this study we investigated the effect of ALD + LPS on monocyte cell line (Raw 264.7) death. ALD strongly augmented LPS-induced programmed cell death (PCD) as well as IL-1β secretion in Raw murine monocytes, whereas necrosis was rather unaffected. ALD + LPS induced caspase-3 activation. Inhibition of IL-1β stimulation partially restored cell viability. These findings suggest that the inhibition of mevalonate pathway, together with a bacterial stimulus, induce a PCD partly sustained by the caspase-3-related apoptosis and partly by caspase-1-associated pyroptosis. The involvement of pyroptosis is a novel hit in our cell model and opens discussions about its role in inflammatory cells with chemical or genetic inhibition of mevalonate pathway.  相似文献   
994.
995.
The response of isolated hepatocytes of Sparus aurata to hypotonic shock was studied by the aid of videometric and light scattering methods. The isolated cells exposed to a rapid change (from 370 to 260 mOsm/kg) of the osmolarity of the bathing solution swelled but thereafter underwent a decrease of cell volume tending to recovery the original size. This homeostatic response RVD (regulatory volume decrease) was inhibited in the absence of extracellular Ca2+ and in the presence of TMB8, an inhibitor of Ca2+ release from intracellular stores. It is likely that Ca2+ entry through verapamil sensitive Ca2+-channels, probably leading to a release of Ca2+ from intracellular stores, is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. RVD tests performed in the presence of various inhibitors of different transport mechanisms, such as BaCl2, quinine, glybenclamide and bumetanide as well as in the presence of a KCl activator, NEM, led us to suggest that the recovery of cell volume in hypotonic solution is accomplished by an efflux of K+ and Cl? through conductive pathways paralleled by the operation of the KCl cotransport, followed by an obliged water efflux from the cells.  相似文献   
996.

Introduction  

Interferon regulatory factor 5 gene (IRF5) polymorphisms are strongly associated with several diseases, including systemic lupus erythematosus (SLE). The association includes risk and protective components. They could be due to combinations of functional polymorphisms and related to cis-regulation of IRF5 expression, but their mechanisms are still uncertain. We hypothesised that thorough testing of the relationships between IRF5 polymorphisms, expression data from multiple experiments and SLE-associated haplotypes might provide useful new information.  相似文献   
997.
998.
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.  相似文献   
999.
Human and Saccharomyces cerevisiae MutLα, and some bacterial MutL proteins, possess a metal ion-dependent endonuclease activity which is important for the in vivo function of these proteins. Conserved amino acids of the C-terminal region of human PMS2, S. cerevisiae PMS1 and of some bacterial MutL proteins have been implicated in the metal-binding/endonuclease activity. However, the contribution of individual amino acids to these activities has not yet been fully elucidated. In this work we show that Pseudomonas aeruginosa MutL protein possess an in vitro metal ion-dependent endonuclease activity. In agreement with previous published results, we observed that mutation of the aspartic acid, the first histidine or the first glutamic acid of the conserved C-terminal DMHAAHERITYE region results in nonfunctional in vivo proteins. We also determined that the arginine residue is essential for the in vivo function of this protein. However, we unexpectedly observed that although the first glutamic acid mutant derivative is not functional in vivo, its in vitro endonuclease activity is even higher than that of the wild-type protein.  相似文献   
1000.
We present an integrated experimental–computational mechanobiology model of chondrogenesis. The response of human articular chondrocytes to culture medium perfusion, versus perfusion associated with cyclic pressurisation, versus non-perfused culture, was compared in a pellet culture model, and multiphysic computation was used to quantify oxygen transport and flow dynamics in the various culture conditions. At 2 weeks of culture, the measured cell metabolic activity and the matrix content in collagen type II and aggrecan were greatest in the perfused+pressurised pellets. The main effects of perfusion alone, relative to static controls, were to suppress collagen type I and GAG contents, which were greatest in the non-perfused pellets. All pellets showed a peripheral layer of proliferating cells, which was thickest in the perfused pellets, and most pellets showed internal gradients in cell density and matrix composition. In perfused pellets, the computed lowest oxygen concentration was 0.075 mM (7.5% tension), the maximal oxygen flux was 477.5 nmol/m2/s and the maximal fluid shear stress, acting on the pellet surface, was 1.8 mPa (0.018 dyn/cm2). In the non-perfused pellets, the lowest oxygen concentration was 0.003 mM (0.3% tension) and the maximal oxygen flux was 102.4 nmol/m2/s. A local correlation was observed, between the gradients in pellet properties obtained from histology, and the oxygen fields calculated with multiphysic simulation. Our results show up-regulation of hyaline matrix protein production by human chondrocytes in response to perfusion associated with cyclic pressurisation. These results could be favourably exploited in tissue engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号