首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   27篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   14篇
  2015年   21篇
  2014年   22篇
  2013年   26篇
  2012年   43篇
  2011年   51篇
  2010年   28篇
  2009年   15篇
  2008年   21篇
  2007年   18篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   11篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1981年   3篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   3篇
排序方式: 共有393条查询结果,搜索用时 171 毫秒
111.
Visible implant elastomer (VIE) tagging showed no significant effect on survival of either 230 single-tagged or 60 multiple-tagged small European eels Anguilla anguilla . Mean tag retention was 98·7% during the 5 month laboratory experiments. Multiple VIE tags had no observed effect on European eel locomotor behaviour. VIE appears a reliable method for individually tagging small European eels, and could be useful in capture–recapture field studies.  相似文献   
112.
The aim of this study was to investigate whether the heme oxygenase (HO) pathway could modulate proliferation of airway smooth muscle (ASM) and the mechanism(s) involved in this phenomenon. In cultured human ASM cells, 10% fetal calf serum or 50 ng/ml platelet-derived growth factor AB induced cell proliferation, extracellular and intracellular reactive oxygen species (ROS) production and ERK1/2 phosphorylation. Pharmacological HO-1 induction (by 10 microm hemin or by 20 microm cobalt-protoporphyrin) and HO inhibition (by 25 microm tin-protoporphyrin or by an antisense oligonucleotide), respectively, reduced and enhanced significantly both cell proliferation and ROS production. Neither the carbon monoxide scavenger myoglobin (5-20 microm) nor the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one could reverse ASM proliferation induced by tin-protoporphyrin, making a role of the CO-cGMP pathway in HO-modulated proliferation unlikely. By contrast, bilirubin (1 microm) and the antioxidant N-acetyl-cysteine (1 mm) significantly reduced mitogen-induced cell proliferation, ROS production, and ERK1/2 phosphorylation. Furthermore, both bilirubin and N-acetyl-cysteine and the ERK1/2 inhibitor PD98059 significantly reversed the effects of HO inhibition on ASM proliferation. These results could be relevant to ASM alterations observed in asthma because activation of the HO pathway prevented the increase in bronchial smooth muscle area induced by repeated ovalbumin challenge in immunized guinea pigs, whereas inhibition of HO had the opposite effect. In conclusion, this study provides evidence for an antiproliferative effect of the HO pathway in ASM in vitro and in vivo through a bilirubin-mediated redox modulation of phosphorylation of ERK1/2.  相似文献   
113.
Prostate cancer (PCa) is the most common non-cutaneous malignancy in men. New ways to diagnose this cancer in its early stages are needed. Unique genetic and biochemical changes in the cell pave the way for tumors to grow and metastasize. Novel imaging approaches attempt to detect pathological processes in cancer cells at the molecular level. This has led to the establishment and development of the field of molecular imaging. Positron emission tomography (PET), magnetic resonance spectroscopic imaging (MRSI), magnetic resonance imaging (MRI), and radiolabeled antibodies are a few of the modalities that can detect abnormal tumor metabolic processes in the clinical setting. Other imaging techniques are still in their early phase of development but hold promise for the future, including bioluminescence imaging (BLI), measurement of tumor oxygenation, and measurement of uptake of iodine by tumors. These techniques are non-invasive and can spare the patient undue morbidity, while potentially providing early diagnosis, accurate follow-up and, finally, valuable prognostic information.  相似文献   
114.
The major histocompatibility complex class I (MHC1) molecule plays a crucial role in cytotoxic lymphocyte function. beta 2-Microglobulin (beta 2m) has been demonstrated to be both a structural component of the MHC1 complex and a chaperone-like molecule for MHC1 folding. beta 2m binding to an isolated alpha 3 domain of MHC1 heavy chain at micromolar concentrations has been shown to accurately model the biochemistry and thermodynamics of beta 2m-driven MHC1 folding. These results suggested a model in which the chaperone-like role of beta 2m is dependent on initial binding to the alpha 3 domain interface of MHC1 with beta 2m. Such a model predicts that a mutant beta 2m molecule with an intact MHC1 alpha 3 domain interaction but a defective MHC1 alpha 1 alpha 2 domain interaction would block beta2m-driven folding of MHC1. In this study we generated such a beta 2m mutant and demonstrated that it blocks MHC1 folding by normal beta 2m at the expected micromolar concentrations. Our data support an initial interaction of beta 2m with the MHC1 alpha 3 domain in MHC1 folding. In addition, the dominant negative mutant beta 2m can block T-cell functional responses to antigenic peptide and MHC1.  相似文献   
115.
To investigate if severe malarial anemia is associated with specific cytokine overproduction, we evaluated serum levels of soluble Fas ligand (sFasL), tumor necrosis factor (TNF-alpha) and interleukin-10 (IL-10) from three groups of young children with Plasmodium falciparum infection (asymptomatic cases, uncomplicated malaria cases and severe malarial anemia cases), in a hyperendemic area of Gabon. In uncomplicated cases, only TNF levels were significantly (p < 0.001) increased in comparison to asymptomatic cases with P. falciparum infection. High levels of sFasL, TNF-alpha and IL-10 were associated with low hemoglobin concentrations, sFasL levels were significantly higher in children with severe malarial anemia (p < 0.001) as compared to both other groups. The parasite density was positively correlated with IL-10, TNF-alpha and sFasL levels. TNF-alpha and sFasL, but not IL-10 or parasitemia, were independent predictors of hemoglobin concentrations. These results suggest that, in malaria, a specific dysregulation of the cytokine balance may lead to complications such as severe anemia.  相似文献   
116.
In Escherichia coli, the binding protein-dependent transport system for maltose and maltodextrins is composed of five proteins — LamB, MaIE, MaIF, MaIG and MaIK — located in the three layers of the bacterial envelope. Proteins MaIF and MaIG are hydrophobic inner membrane components mediating the energy-dependent translocation of substrates into the cytoplasm. In this paper, we analyse the topology of the MaIG protein by using methods based on the properties of fusions between maIG and‘phoA, a truncated gene encoding alkaline phosphatase lacking its translation initiation and exportation signals. Fusions were obtained by using either phage λTnphoA or by constructing in vitro fusions located randomly within the maIG gene. The deduced topological model suggests that MaIG spans the membrane six times and has its amino- and carboxy-termini in the cytoplasm. These results will be helpful for the interpretation of the phenotypes of mutants in maIG.  相似文献   
117.
The maIG gene encodes a hydrophobic cytoplasmic membrane protein which is required for the energy-dependent transport of maltose and maltodextrins in Escherichia coli. The MalG protein, together with MalF and MalK proteins, forms a multimeric complex in the membrane consisting of two MalK subunits for each MalF and MalG subunit. Fifteen mutations have been isolated in malG by random linker insertion mutagenesis. Two regions essential for maltose transport have been identified. In particular, a hydro philic region containing the peptidic motif EAA—G———I-LP, highly conserved among inner membrane proteins from binding protein-dependent transport systems, is essential for maltose transport. The results also show that several regions of MalG are not essential for function. A region (residues 30–50) encompassing the first predicted transmembrane segment and the first periplasmic loop in MalG may be modified extensively with little effect on maltose transport and no effect on the stability and the localization of the protein. A region located at the middle of the protein (residues 153–157) is not essential for the function of the protein. A region, essential for maltodextrin utilization but not for maltose transport, has been identified near the C-terminus of the protein.  相似文献   
118.
A thermophilic DNA polymerase has been purified to near homogeneity from the archaebacterium Thermoplasma acidophilum. Analysis of the purified enzyme by sodium dodecyl sulfate gel electrophoresis revealed a single polypeptide of 88 kDa which co-sediments with the DNA polymerase activity on sucrose gradients. Combination of sedimentation and gel filtration analyses indicates that this DNA polymerase is an 88-kDa monomeric enzyme in its native form. The DNA polymerase is resistant to aphidicolin, slightly sensitive to 2',3'-dideoxyribosylthymine triphosphate and inhibited by N-ethylmaleimide when preincubation with this reagent is performed at 65 degrees C. We find that a 3'----5' exonuclease activity is associated with the purified DNA polymerase; the two activities of the enzyme are optimal at 65 degrees C but the exonuclease activity is active in a broader range of lower temperatures and is more thermostable than the DNA polymerase activity.  相似文献   
119.
Inhibition of protein kinase activity is a focus of intense drug discovery efforts in several therapeutic areas. Major challenges facing the field include understanding of the factors determining the selectivity of kinase inhibitors and the development of compounds with the desired selectivity profile. Here, we report the analysis of sequence variability among high and low affinity targets of eight different small molecule kinase inhibitors (BIRB796, Tarceva, NU6102, Gleevec, SB203580, balanol, H89, PP1). It is observed that all high affinity targets of each inhibitor are found among a relatively small number of kinases, which have similar residues at the specific positions important for binding. The findings are highly statistically significant, and allow one to exclude the majority of kinases in a genome from a list of likely targets for an inhibitor. The findings have implications for the design of novel inhibitors with a desired selectivity profile (e.g. targeted at multiple kinases), the discovery of new targets for kinase inhibitor drugs, comparative analysis of different in vivo models, and the design of "a-la-carte" chemical libraries tailored for individual kinases.  相似文献   
120.
The C-terminal region of sulfate transporters from plants and animals belonging to the SLC26 family members shares a weak but significant similarity with the Bacillus sp. anti-anti-sigma protein SpoIIAA, thus defining the STAS domain (sulfate transporter and anti-sigma antagonist). The present study is a structure/function analysis of the STAS domain of SULTR1.2, an Arabidopsis thaliana sulfate transporter. A three-dimensional model of the SULTR1.2 STAS domain was built which indicated that it shares the SpoIIAA folds. Moreover, the phosphorylation site, which is necessary for SpoIIAA activity, is conserved in the SULTR1.2 STAS domain. The model was used to direct mutagenesis studies using a yeast mutant defective for sulfate transport. Truncation of the whole SULTR1.2 STAS domain resulted in the loss of sulfate transport function. Analyses of small deletions and mutations showed that the C-terminal tail of the SULTR1.2 STAS domain and particularly two cysteine residues plays an important role in sulfate transport by SULTR1.2. All the substitutions made at the putative phosphorylation site Thr-587 led to a complete loss of the sulfate transport function of SULTR1.2. The reduction or suppression of sulfate transport of the SULTR1.2 mutants in yeast was not due to an incorrect targeting to the plasma membrane. Both our three-dimensional modeling and mutational analyses strengthen the hypothesis that the SULTR1.2 STAS domain is involved in protein-protein interactions that could control sulfate transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号