首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1787篇
  免费   117篇
  2023年   11篇
  2022年   7篇
  2021年   45篇
  2020年   20篇
  2019年   35篇
  2018年   44篇
  2017年   33篇
  2016年   48篇
  2015年   79篇
  2014年   95篇
  2013年   106篇
  2012年   118篇
  2011年   124篇
  2010年   72篇
  2009年   79篇
  2008年   98篇
  2007年   91篇
  2006年   81篇
  2005年   64篇
  2004年   71篇
  2003年   61篇
  2002年   57篇
  2001年   24篇
  2000年   26篇
  1999年   26篇
  1998年   14篇
  1997年   15篇
  1996年   9篇
  1995年   11篇
  1993年   7篇
  1992年   14篇
  1991年   16篇
  1990年   18篇
  1989年   18篇
  1988年   21篇
  1987年   23篇
  1986年   24篇
  1985年   18篇
  1984年   16篇
  1983年   17篇
  1982年   13篇
  1981年   10篇
  1980年   7篇
  1979年   12篇
  1978年   21篇
  1977年   7篇
  1976年   13篇
  1975年   9篇
  1971年   5篇
  1968年   5篇
排序方式: 共有1904条查询结果,搜索用时 140 毫秒
991.
992.
Recent research has implicated a large number of gluten-derived peptides in the pathogenesis of celiac disease, a preponderantly HLA-DQ2-associated disorder. Current evidence indicates that the core of some of those peptides is ten amino acids long, while HLA class II normally accommodates nine amino acids in the binding groove. We have now investigated this in detail, using gluten-specific T-cell clones, HLA-DQ2-specific peptide-binding assays and molecular modelling. T-cell recognition of both a -gliadin peptide and a low-molecular-weight glutenin peptide was found to be strictly dependent on a ten-amino acids-long peptide. Subsequent peptide-binding studies indicated that the glutenin peptide bound in a conventional p1/p9 register, with an additional proline at p-1. Testing of substitution analogues demonstrated that the nature of the amino acid at p-1 strongly influenced T-cell recognition of the peptide. Moreover, molecular modelling confirmed that the glutenin peptide binds in a p1/p9 register, and that the proline at p-1 points upward towards the T-cell receptor. Database searches indicate that a large number of potential T-cell stimulatory gluten peptides with an additional proline at relative position p-1 exist, suggesting that the recognition of other gluten peptides may depend on this proline as well. This knowledge may be of importance for the identification of additional T-cell stimulatory gluten peptides and the design of a peptide-based, tolerance-inducing therapy.  相似文献   
993.
Cellular glycosphingolipid (GSL) storage is known to promote cholesterol accumulation. Although physical interactions between GSLs and cholesterol are thought to cause intracellular cholesterol "trapping," it is not known whether cholesterol homeostatic mechanisms are also impaired under these conditions. ApoA-I-mediated cholesterol efflux via ABCA1 (ATP-binding cassette transporter A1) is a key regulator of cellular cholesterol balance. Here, we show that apoA-I-mediated cholesterol efflux was inhibited (by up to 53% over 8 h) when fibroblasts were treated with lactosylceramide or the glucocerebrosidase inhibitor conduritol B epoxide. Furthermore, apoA-I-mediated cholesterol efflux from fibroblasts derived from patients with genetic GSL storage diseases (Fabry disease, Sandhoff disease, and GM1 gangliosidosis) was impaired compared with control cells. Conversely, apoA-I-mediated cholesterol efflux from fibroblasts and cholesterol-loaded macrophage foam cells was dose-dependently stimulated (by up to 6-fold over 8 h) by the GSL synthesis inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP). Unexpectedly, a structurally unrelated GSL synthesis inhibitor, N-butyldeoxynojirimycin, was unable to stimulate apoA-I-mediated cholesterol efflux despite achieving similar GSL depletion. PDMP was found to up-regulate ABCA1 mRNA and protein expression, thereby identifying a contributing mechanism for the observed acceleration of cholesterol efflux to apoA-I. This study reveals a novel defect in cellular cholesterol homeostasis induced by GSL storage and identifies PDMP as a new agent for enhancing cholesterol efflux via the ABCA1/apoA-I pathway.  相似文献   
994.
Lin YL  Elias Y  Huang RH 《Biochemistry》2005,44(31):10494-10500
Colicin E5 specifically cleaves four tRNAs in Escherichia coli that contain the modified nucleotide queuosine (Q) at the wobble position, thereby preventing protein synthesis and ultimately resulting in cell death. Here, the crystal structure of the catalytic domain of colicin E5 (E5-CRD) from E. coli was determined at 1.5 A resolution. Unexpectedly, E5-CRD adopts a core folding with a four-stranded beta-sheet packed against an alpha-helix, seen in the well-studied ribonuclease T1 despite a lack of sequence similarity. Beyond the core catalytic domain, an N-terminal helix, a C-terminal beta-strand and loop, and an extended internal loop constitute an RNA binding cleft. Mutational analysis identified five amino acids that were important for tRNA substrate binding and cleavage by E5-CRD. The structure, together with the mutational study, allows us to propose a model of colicin E5-tRNA interactions, suggesting the molecular basis of tRNA substrate recognition and the mechanism of tRNA cleavage by colicin E5.  相似文献   
995.
Phannachet K  Elias Y  Huang RH 《Biochemistry》2005,44(47):15488-15494
Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi.  相似文献   
996.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   
997.
Speract, a sperm-activating peptide (SAP) from sea urchin eggs, increases the intracellular concentration of Ca2+ ([Ca2+]i) and modulates sperm motility. We measured the initial sperm response to speract using its caged analog and observed, for the first time, a small but significant decrease in sperm [Ca2+]i before the increase. Both directions of the [Ca2+]i change were completely blocked in high K+ seawater. Using membrane-permeant caged cyclic nucleotides (cNMP), only cGMP induced the decrease in [Ca2+]i although both cGMP and cAMP increased the [Ca2+]i. The decrease in the [Ca2+]i induced by cGMP was more notable following a second photolytic event, once [Ca2+]i had been elevated by an initial flash. This pattern of [Ca2+]i change was confirmed in individual sperm. These results together with pharmacological evidence suggest that the initial [Ca2+]i decrease is due to a Na+/Ca2+ exchanger activity, stimulated by hyperpolarization mediated by K+ efflux through cGMP-regulated K+ channels.  相似文献   
998.
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.  相似文献   
999.
Lipopenia and skin barrier abnormalities in DGAT2-deficient mice   总被引:14,自引:0,他引:14  
The synthesis of triglycerides is catalyzed by two known acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Although they catalyze the same biochemical reaction, these enzymes share no sequence homology, and their relative functions are poorly understood. Gene knockout studies in mice have revealed that DGAT1 contributes to triglyceride synthesis in tissues and plays an important role in regulating energy metabolism but is not essential for life. Here we show that DGAT2 plays a fundamental role in mammalian triglyceride synthesis and is required for survival. DGAT2-deficient (Dgat2(-/-)) mice are lipopenic and die soon after birth, apparently from profound reductions in substrates for energy metabolism and from impaired permeability barrier function in the skin. DGAT1 was unable to compensate for the absence of DGAT2, supporting the hypothesis that the two enzymes play fundamentally different roles in mammalian triglyceride metabolism.  相似文献   
1000.
Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号