首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2035篇
  免费   140篇
  国内免费   2篇
  2023年   14篇
  2022年   20篇
  2021年   71篇
  2020年   37篇
  2019年   45篇
  2018年   54篇
  2017年   56篇
  2016年   78篇
  2015年   105篇
  2014年   126篇
  2013年   172篇
  2012年   170篇
  2011年   169篇
  2010年   83篇
  2009年   88篇
  2008年   123篇
  2007年   93篇
  2006年   92篇
  2005年   90篇
  2004年   84篇
  2003年   73篇
  2002年   53篇
  2001年   30篇
  2000年   22篇
  1999年   20篇
  1998年   12篇
  1997年   11篇
  1996年   11篇
  1995年   13篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   12篇
  1990年   6篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   9篇
  1985年   7篇
  1984年   12篇
  1983年   4篇
  1981年   7篇
  1980年   11篇
  1979年   9篇
  1974年   4篇
  1973年   4篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
排序方式: 共有2177条查询结果,搜索用时 31 毫秒
71.
Switchgrass (Panicum virgatum L.) is a perennial warm season grass that is native to the plains of North America and is widely grown as a forage, bioenergy or groundcover crop. Despite its importance, a bottleneck in switchgrass production is poor seedling vigor, which as a perennial crop represents an important time for management. Herein, data identify a suite of culturable bacterial microflora extracted from switchgrass, and show their capability to influence host plant growth and development. A total of 307 bacterial isolates were cultured and isolated from surface sterilized switchgrass biomass and sequence identified into 76 strains (subspecies classification), 36 species and 5 phyla. Approximately 58% of bacterial strains, when reintroduced into surface‐sterilized switchgrass seeds, were documented to increase lamina length (cm from base to tip after 60 days growth) relative to uninoculated controls. Ecologically, Phylum Firmicutes was the most abundant bacterial classification and encompassed 75% of all isolates. Although the culturable bacterial community studies herein represent an unknown and assumedly minor proportion of the total microbiome, by focusing on culturable bacteria, we delineate functional feedback between the presence of isolated bacteria and switchgrass seedling growth.  相似文献   
72.
In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis.  相似文献   
73.
Interspecific interactions may occur for just a brief period each year before the populations involved become spatially separated. For instance, the range of a migrating population may overlap with that of a population of predators for a single season. In this work, we outline a framework for examining how this kind of ‘transient’ predation influences the dynamics of the prey population. A time-dependent switching system is used to partition the annual cycle into distinct segments. We then consider the effect of a single predatory interaction during a particular season, with the associated predators characterised as either generalists or specialists. We show that generalist predation potentially can allow multiple stable limit cycles to exist. Predation by specialists may cause prey abundance to oscillate over long time periods. This is shown to be a consequence of over-exploitation of newborn prey individuals. The habitat-based formulation extends naturally to the study of interannual variation in environmental conditions. We illustrate how such changes may cause migrant populations to undergo sudden changes in numbers that are not readily reversible.  相似文献   
74.
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l?1 Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.  相似文献   
75.
Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim was to empirically evaluate the effects of landscape‐scale forest reduction on the spatial genetic structure and gene flow of Euterpe edulis Mart (Arecaceae), a palm tree considered a keystone resource for many vertebrate species. This study was carried out in nine forest remnants in the Atlantic Forest, northeastern Brazil, located in landscapes within a gradient of forest cover (19–83%). We collected leaves of 246 adults and 271 seedlings and performed genotyping using microsatellite markers. Our results showed that the palm populations had low spatial genetic structure, indicating that forest reduction did not influence this genetic parameter for neither seedlings nor adults. However, forest loss decreased the gene flow distance, which may negatively affect the genetic diversity of future generations by increasing the risk of local extinction of this keystone palm. For efficient strategies of genetic variability conservation and maintenance of gene flow in E. edulis, we recommend the maintenance of landscapes with intermediary to high levels of forest cover, that is, forest cover above 40%.  相似文献   
76.
The intestinal surface is directly exposed to both commensal microorganisms as well as pathogens with a single layer of epithelium separating luminal microorganisms from internal tissues. Antimicrobial peptides play a crucial role in allowing epithelial cells to contain in the lumen beneficial and pathogenic microorganisms. The commensal dependent, epithelial produced, Th2 cytokine IL-25 can induce IL-13 and potentially the antimicrobial peptide angiogenin-4. Here we show that IL-13 downstream of IL-25 is required to induce angiogenin-4. IL-25 mediated induction of angiogenin-4 is furthermore not dependent on IL-22 or IL-17.  相似文献   
77.

Background

During Trypanosoma cruzi infection, macrophages produce reactive oxygen species (ROS) in a process called respiratory burst. Several works have aimed to elucidate the role of ROS during T. cruzi infection and the results obtained are sometimes contradictory. T. cruzi has a highly efficiently regulated antioxidant machinery to deal with the oxidative burst, but the parasite macromolecules, particularly DNA, may still suffer oxidative damage. Guanine (G) is the most vulnerable base and its oxidation results in formation of 8-oxoG, a cellular marker of oxidative stress.

Methodology/Principal Findings

In order to investigate the contribution of ROS in T. cruzi survival and infection, we utilized mice deficient in the gp91phox (Phox KO) subunit of NADPH oxidase and parasites that overexpress the enzyme EcMutT (from Escherichia coli) or TcMTH (from T. cruzi), which is responsible for removing 8-oxo-dGTP from the nucleotide pool. The modified parasites presented enhanced replication inside murine inflammatory macrophages from C57BL/6 WT mice when compared with control parasites. Interestingly, when Phox KO macrophages were infected with these parasites, we observed a decreased number of all parasites when compared with macrophages from C57BL/6 WT. Scavengers for ROS also decreased parasite growth in WT macrophages. In addition, treatment of macrophages or parasites with hydrogen peroxide increased parasite replication in Phox KO mice and in vivo.

Conclusions

Our results indicate a paradoxical role for ROS since modified parasites multiply better inside macrophages, but proliferation is significantly reduced when ROS is removed from the host cell. Our findings suggest that ROS can work like a signaling molecule, contributing to T. cruzi growth inside the cells.  相似文献   
78.
Water deficit is the major yield‐limiting factor for sugarcane crop production that can be enhanced by inoculating with plant growth promoting bacteria (PGPB) combined with humic substances. The aim of this work was to examine changes to the metabolic profile and antioxidant enzyme activity of sugarcane treated with PGPB and humic acid (HA) after drought and then rehydration. The drought was imposed by withholding irrigation for 21 days thereby measuring enzyme activity, metabolic profile and photosynthetic rate 1 week after rehydratation. Growth of plants treated with HA, PGPB and with both treatments combined (PGPB + HA) was higher than control plants. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities remained higher after rehydration only in plants treated with HA. Plants treated with HA and PGPB + HA exhibited increased transpiration, stomatal conductance and net photosynthesis than plants treated with PGPB. The PGPB‐treated plants exhibited drought resistance that resembled ‘delayed stress onset’, which is a new term for preserving water in the plants tissues. Water preservation in plants treated with PGPB was corroborated by higher relative water content (RWC) than control plants at the end of the drought period. Plants treated with HA + PGPB exhibited the highest water potential after rehydration and high RWC. Osmotic adjustment in the other treatments (control, HA and PGPB) was indicated by a new pattern of metabolic response after rehydration, including generally enhanced carbohydrates and proteins and specific changes induced by HA‐enhancing aromatic compounds, whereas PGPB exhibited enhanced fatty acids and other aliphatic H species. Humic acids assist with drought stress recovery by inducing antioxidant enzyme activity whereas PGPB induced preservation of leaf water potential and RWC by closing stomata efficiently, resulting in plant water preservation.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号