首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   42篇
  2023年   3篇
  2022年   4篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   6篇
  2016年   11篇
  2015年   28篇
  2014年   24篇
  2013年   25篇
  2012年   44篇
  2011年   23篇
  2010年   15篇
  2009年   11篇
  2008年   23篇
  2007年   14篇
  2006年   17篇
  2005年   6篇
  2004年   20篇
  2003年   9篇
  2002年   17篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1997年   5篇
  1996年   3篇
  1993年   6篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1986年   5篇
  1984年   3篇
  1980年   3篇
  1970年   4篇
  1967年   3篇
  1964年   4篇
  1962年   2篇
  1960年   2篇
  1955年   3篇
  1953年   2篇
  1950年   2篇
  1929年   2篇
  1927年   3篇
  1925年   2篇
  1912年   3篇
  1910年   4篇
  1909年   3篇
  1908年   5篇
排序方式: 共有478条查询结果,搜索用时 15 毫秒
71.
Antiserum to crystallized fructosediphosphate aldolase B from human liver precipitated/inhibited the antigen in solution. It activated the mutant enzyme in liver extracts of 3 patients with hereditary fructose intolerance but not in 2 others. It was concluded that genetic variability existed between these patients. In vitro activation of a defective human enzyme, demonstrated here for the first time, indicates that in vivo restoration of activity of mutant enzymes may become feasible.  相似文献   
72.
73.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   
74.
75.
76.

Aims

The response of vegetation productivity to global warming is becoming a worldwide concern. While most reports on responses to warming trends are based on measured increases in air temperature, few studies have evaluated long-term variation in soil temperature and its impacts on vegetation productivity. Such impacts are especially important for high-latitude or high-altitude regions, where low temperature is recognized as the most critical limitation for plant growth.

Methods

We used Partial Least Squares regression to correlate long-term aboveground net primary productivity (ANPP) data of an alpine grassland on the Qinghai-Tibetan Plateau with daily air and soil temperatures during 1997–2011. We also analyzed temporal trends for air temperature and soil temperature at different depths.

Results

Soil temperatures have steadily increased at a rate of 0.4–0.9 °C per decade, whereas air temperatures showed no significant trend between 1997 and 2011. While temperature increases during the growing season (May–August) promoted aboveground productivity, warming before the growing season (March–April) had a negative effect on productivity. The negative effect was amplified in the soil layers, especially at 15 cm depth, where variation in aboveground productivity was dominated by early-spring soil warming, rather than by increasing temperature during the growing season.

Conclusions

Future warming, especially in winter and spring, may further reduce soil water availability in early spring, which may slow down or even reverse the increases in grassland aboveground productivity that have widely been reported on the Qinghai-Tibetan Plateau.
  相似文献   
77.
78.
79.
Although it is generally recognized that global biodiversity is declining, few studies have examined long‐term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5‐year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号