首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   97篇
  2021年   10篇
  2019年   5篇
  2018年   9篇
  2017年   7篇
  2016年   11篇
  2015年   11篇
  2014年   17篇
  2013年   28篇
  2012年   37篇
  2011年   39篇
  2010年   20篇
  2009年   15篇
  2008年   32篇
  2007年   28篇
  2006年   34篇
  2005年   38篇
  2004年   29篇
  2003年   29篇
  2002年   35篇
  2001年   12篇
  2000年   13篇
  1999年   15篇
  1995年   4篇
  1993年   4篇
  1992年   10篇
  1991年   9篇
  1990年   14篇
  1989年   5篇
  1988年   9篇
  1986年   11篇
  1985年   12篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   9篇
  1978年   9篇
  1977年   9篇
  1976年   8篇
  1975年   8篇
  1974年   4篇
  1973年   13篇
  1972年   4篇
  1971年   4篇
  1970年   8篇
  1969年   11篇
  1968年   7篇
  1967年   4篇
  1966年   4篇
排序方式: 共有704条查询结果,搜索用时 265 毫秒
71.
Radial positions of centromeres of human chromosomes X, 1, and 19 were determined in the nuclei of primary fibroblasts before and after removal of 60%-80% of chromatin. It has been demonstrated that the specific radial positions of these centromeres (more central for the chromosome 19 centromere and more peripheral for the centromeres of chromosomes 1 and X) remain unchanged in chromatin-depleted nuclei. Additional digestion of nuclear RNA did not influence this specific distribution. These results strongly suggest that the characteristic organization of interphase chromosomes is supported by the proteinous nuclear matrix and is not maintained by simple repulsing of negatively charged chromosomes.  相似文献   
72.
73.
74.
Motta A  Reches M  Pappalardo L  Andreotti G  Gazit E 《Biochemistry》2005,44(43):14170-14178
Recent studies have provided evidence that peptides as short as tripeptides do adopt preferred conformations. Here we report that the tripeptide Ala-Phe-Ala (AFA) in aqueous solution preferentially forms an inverse gamma-turn. Circular dichroism (CD) indicated the presence of a predominant turn structure, and Fourier transform infrared (FTIR) bands suggested the presence of a gamma-turn forming a bifurcated H-bond with the solvent molecules. The high-resolution structure was obtained by a combined use of NMR spectroscopy and calculations. On the basis of 30 unambiguous ROESY-derived distance restraints (including the Halpha-NH NOE between Ala(1) and Ala(3) and a hydrogen bond between the CO group of Ala(1) and the NH group of Ala(3)), calculations clearly demonstrated the presence of an inverse gamma-turn centered on Phe(2). From NOE data, we estimated a mole fraction for the gamma-turn of 0.65. Since for AFA an extended beta-strand was also reported [Eker, F., Griebenow, K., Cao, X., Nafie, L. A., and Schweitzer-Stenner, R. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 10054-10059], we investigated the possibility that gamma-turn and beta-strand may represent two major conformations. By using a best-fit procedure that calculated experimental NOEs as weighted averages of the effects originating from both structures, we were able to calculate with good accuracy the backbone NOEs at 280 K in terms of the two limiting conformers, yielding a mole fraction for the gamma-turn and beta-strand conformations of 0.60 and 0.40, respectively, in good agreement with those found by NOE data. The implication of the existence of a preferred conformation by a small structural element is discussed in the context of the nucleation of protein folding events and the design of small peptide and peptidomimetic drugs.  相似文献   
75.
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.  相似文献   
76.
Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca2+ (Cai). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca2+-permeable cation channel that is transiently modulated by changes in Cai. The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca2+-dependent process related to signaling pathways involved in regulation of Ca2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca2+-dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking.  相似文献   
77.
Porat Y  Mazor Y  Efrat S  Gazit E 《Biochemistry》2004,43(45):14454-14462
The formation of amyloid fibril is associated with major human diseases, including Alzheimer's disease, prion diseases, and type 2 diabetes. Methods for efficient inhibition of amyloid fibril formation are therefore highly clinically important. A principal approach for the inhibition of amyloid formation is based on the use of modified molecular recognition elements. Here, we demonstrate efficient inhibition of amyloid formation of the type 2 diabetes-related human islet amyloid polypeptide (hIAPP) by a modified aromatic peptide fragment and a small aromatic polyphenol molecule. A molecular recognition assay using peptide array analysis suggested that molecular recognition between hIAPP and its core amyloidogenic module is mediated by aromatic rather than hydrophobic interactions. To study the possible effect of aromatic interactions on inhibition of hIAPP fibril formation, we have used peptide and small molecule inhibitors. The addition of a nonamyloidogenic peptide analogue of the core module NFGAILSS, in which phenylalanine was substituted with tyrosine (NYGAILSS), resulted in substantial inhibition of fibril formation by hIAPP. The inhibition was significantly stronger than the one achieved using a beta-sheet breaker-conjugated peptide NFGAILPP. On the basis of the molecular arrangement of the tyrosine-phenylalanine interaction, we suggest that the inhibition stems from the geometrical constrains of the heteroaromatic benzene-phenol interaction. In line with this notion, we demonstrate remarkable inhibition of hIAPP fibril formation and cytotoxicity toward pancreatic beta-cells by a small polyphenol molecule, the nontoxic phenol red compound. Taken together, our results provide further experimental support for the potential role of aromatic interactions in amyloid formation and establish a novel approach for its inhibition.  相似文献   
78.
The ZnTs are a growing family of proteins involved in lowering or sequestration of cellular zinc. Using fluorescent measurements of zinc transport we have addressed the mechanism of action of the most ubiquitously expressed member of this family, ZnT-1. This protein has been shown to lower levels of intracellular zinc though the mechanism has remained elusive. The rate of zinc efflux in HEK293 cells expressing ZnT-1 was not accelerated in comparison to control cells, suggesting that ZnT-1 may be involved in regulating influx rather than efflux of zinc. Co-expression of the L-type calcium channel, a major route for zinc influx, and ZnT-1 resulted in a 3-fold reduction in the rate of zinc influx in HEK293 and PC-12 cells, indicating that ZnT-1 modulates zinc permeation through this channel. Immunoblot analysis indicates that ZnT-1 expression does not modulate LTCC expression. Our findings therefore indicate that ZnT-1 modulates the permeation of cations through LTCC, thereby, regulating cation homeostasis through this pathway. Furthermore, ZnT-1 may play a role in cellular ion homeostasis and thereby confer protection against pathophysiological events linked to cellular Ca(2+) or Zn(2+) permeation and cell death.  相似文献   
79.
Crystallization of membrane proteins is a major stumbling block en route to elucidating their structure and understanding their function. The novel concept of membrane protein crystallization from lipidic cubic phases, "in cubo", has yielded well-ordered crystals and high-resolution structures of several membrane proteins, yet progress has been slow due to the lack of understanding of the molecular mechanisms of protein transport, crystal nucleation, growth, and defect formation in cubo. Here, we examine at molecular and mesoscopic resolution with atomic force microscopy the morphology of in cubo grown bacteriorhodopsin crystals in inert buffers and during etching by detergent. The results reveal that crystal nucleation occurs following local rearrangement of the highly curved lipidic cubic phase into a lamellar structure, which is akin to that of the native membrane. Crystals grow within the bulk cubic phase surrounded by such lamellar structures, whereby transport towards a growing crystalline layer is constrained to within an individual lamella. This mechanism leads to lack of dislocations, generation of new crystalline layers at numerous locations, and to voids and block boundaries. The characteristic macroscopic lengthscale of these defects suggests that the crystals grow by attachment of single molecules to the nuclei. These insights into the mechanisms of nucleation, growth and transport in cubo provide guidance en route to a rational design of membrane protein crystallization, and promise to further advance the field.  相似文献   
80.
Stuttering is a speech disorder long recognized to have a genetic component. Recent linkage studies mapped a susceptibility locus for stuttering to chromosome 12 in 46 highly inbred families ascertained in Pakistan. We report here on linkage studies in 100 families of European descent ascertained in the United States, Sweden, and Israel. These families included 252 individuals exhibiting persistent stuttering, 45 individuals classified as recovered from stuttering, and 19 individuals too young to classify. Primary analyses identified moderate evidence for linkage of the broader diagnosis of "ever stuttered" (including both persistent and recovered stuttering) on chromosome 9 (LOD = 2.3 at 60 cM) and of the narrower diagnosis of persistent stuttering on chromosome 15 (LOD = 1.95 at 23 cM). In contrast, sex-specific evidence for linkage on chromosome 7 at 153 cM in the male-only data subset (LOD = 2.99) and on chromosome 21 at 34 cM in the female-only data subset (LOD = 4.5) met genomewide criteria for significance. Secondary analyses revealed a significant increase in the evidence for linkage on chromosome 12, conditional on the evidence for linkage at chromosome 7, with the location of the increased signal congruent with the previously reported signal in families ascertained in Pakistan. In addition, a region on chromosome 2 (193 cM) showed a significant increase in the evidence for linkage conditional on either chromosome 9 (positive) or chromosome 7 (negative); this chromosome 2 region has been implicated elsewhere in studies on autism, with increased evidence for linkage observed when the sample is restricted to those with delayed onset of phrase speech. Our results support the hypothesis that the genetic component to stuttering has significant sex effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号