首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   12篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2000年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有101条查询结果,搜索用时 30 毫秒
91.
Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.  相似文献   
92.

Background  

In utero microinjection has proven valuable for exploring the developmental consequences of altering gene expression, and for studying cell lineage or migration during the latter half of embryonic mouse development (from embryonic day 9.5 of gestation (E9.5)). In the current study, we use ultrasound guidance to accurately target microinjections in the conceptus at E6.5–E7.5, which is prior to cardiovascular or placental dependence. This method may be useful for determining the developmental effects of targeted genetic or cellular interventions at critical stages of placentation, gastrulation, axis formation, and neural tube closure.  相似文献   
93.
The qualitative and quantitative carotenoid composition of seven prasinophytes (eight clones) have been examined by chromatographic (TLC and HPLC) and spectroscopic methods (VIS, CD and mass spectra).

The prasinophytes studied fall into two pigment types: (A) those producing common green algal carotenoids (β,β-carotene, β,ε-carotene, lutein, zeaxanthin and the epoxides violaxanthin and neoxanthin) and (B) prasinophytes synthesising carotenoids peculiar to this algal class (prasinoxanthin, anhydroprasinoxanthin, uriolide, anhydrouriolide, micromonal, anhydromicromonal, micromonol, anhydromicromonol and dihydrolutein), where prasinoxanthin is a major carotenoid.

Mantoniella squamata (clone 2) was grown under both low and high light intensity, revealing differences in carotenoid composition. Lutein together with lesser amounts of zeaxanthin and its epoxides were only detected at high light intensity.

Three previously unidentified carotenoids were identified as prasinoxanthin (xanthophyll K), micromonal and dihydrolutein.  相似文献   

94.
95.
Journal of Applied Phycology - Botryococcus braunii CCAP 807/2 has been studied intensively for biofuel production due to its high hydrocarbon content. This strain is also capable of producing high...  相似文献   
96.
97.
Bathycoccus prasinos Eikrem et Throndsen exhibited a complex carotenoid distribution pattern including the carotenes β,β-carotene (0.8% of total carotenoids) and β, ° Carotene (0.4%) and several xanthophylls. These were prasinoxanthin (49% of total carotenoids), micromonal (16%), neoxanthin (14%), uriolide (7%), violaxanthin (0.8%), 31-dehydrouriolide (0.8%), dihydrolutein (0.1%), two partly characterized esterified carotenols (together 10%), and five minor unidentified carotenols (together 2%). The identifications were based on high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), visible spectroscopy (VIS), and mass spectra (MS) and in part on 1H nuclear magnetic resonance (NMR), circular dichroism (CD), and chemical derivatization. The carotenoid composition of B. prasinos was related to that of other prasinoxanthin / uriolide / micromonal-producing prasinophytes (Mantoniella squamata, Micromonas pusilla, and Pseudoscourfieldia marina). The relative distribution of chlorophylls (w/w) were chlorophyll a (chl a; 63%), chl b (31%), and an unknown chl c-like chlorophyll (7%) with spectral characteristics similar to magnesium 2,4-divinylphaeoporphyrin a, monomethyl ester, compatible with other prasinophytes. The chemosystematic data and ultrastructural characteristics for the order Mamiellales are discussed. We conclude that HPLC studies alone are insufficient for the identification and characterization of the carotenoids, including the minor carotenoids essential for biosynthetic/chemosystematic considerations.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号