首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  68篇
  2022年   2篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
  1985年   1篇
排序方式: 共有68条查询结果,搜索用时 0 毫秒
51.
The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.  相似文献   
52.
Non‐technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS‐CoV2 research so as to provide greater transparency on animal use. Subject Categories: Economics, Law & Politics, Pharmacology & Drug Discovery, Science Policy & Publishing

The COVID‐19 pandemic has accelerated biomedical research and drug development to an unprecedented pace. Governments worldwide released emergency funding for biomedical research that allowed scientists to focus on COVID‐19 and related drug and vaccine development. As a result, a flood of scientific articles on SARS‐CoV‐2 and COVID‐19 was published since early 2020. More importantly though, within less than 2 years, scientists in academia and industry developed vaccines against the virus from scratch: Several vaccines have now received regulatory approval and are being mass produced to immunize the human population worldwide.This colossal success of science rests in large part on the shoulders of animals that were used in basic and pre‐clinical research and regulatory testing. Notwithstanding, animal experimentation has remained a highly controversial and heated topic between advocates for research and animal rights activists. During the past decades, European policymakers responded to the debate by enacting stricter regulations, which inevitably has increased the bureaucratic hurdles for experimentation on animals. Scientists have for long spoken out against this additional burden, arguing that both basic and translational researches to improve human health crucially relies on animal experimentation—as the COVID‐19 pandemic aptly demonstrated (Genzel et al, 2020).  相似文献   
53.

Background

Methylated arginines are endogenous analogues of L-arginine, the substrate for nitric oxide (NO) synthase. Asymmetric dimethylarginine (ADMA) interferes with NO formation, causing endothelial dysfunction. ADMA is a predictor of cardiovascular events and mortality in humans. It is eliminated primarily by enzymatic activity of dimethylarginine dimethylaminohydrolase (DDAH).

Methodology/Principal Findings

We investigated whether human DDAH-1 (hDDAH-1) transgenicity protects from ischemic tissue damage in temporary middle cerebral artery occlusion (tMCAO) in mice. Infarct sizes did not significantly differ between hDDAH-1 transgenic (TG) mice and wild-type littermates (WT). As expected, ADMA plasma concentrations were significantly decreased, cerebral hDDAH expression and protein significantly increased in transgenic animals. Interestingly, neither brain tissue DDAH activity nor ADMA concentrations were different between TG and WT mice. In contrast, muscular DDAH activity was generally lower than in brain but significantly increased in TG mice.

Conclusion/Significance

Our study demonstrates that hDDAH-1 transgenic mice are not protected from ischemic cerebral tissue damage in tMCAO. This lack of protection is due to high basal cerebral DDAH activity, which is not further increasable by transgenic overexpression of DDAH.  相似文献   
54.
IL-2 receptor (IL-2R) signaling is essential for optimal stability and function of CD4+CD25hiFOXP3+ regulatory T cells (Treg); a cell type that plays an integral role in maintaining tolerance. Thus, we hypothesized that decreased response to IL-2 may be a common phenotype of subjects who have autoimmune diseases associated with variants in the IL2RA locus, including T1D and MS, particularly in cells expressing the high affinity IL-2R alpha chain (IL-2RA or CD25). To examine this question we used phosphorylation of STAT5 (pSTAT5) as a downstream measure of IL-2R signaling, and found a decreased response to IL-2 in CD4+CD25hi T cells of T1D and MS, but not SLE patients. Since the IL2RArs2104286 haplotype is associated with T1D and MS, we measured pSTAT5 in controls carrying the rs2104286 risk haplotype to test whether this variant contributed to reduced IL-2 responsiveness. Consistent with this, we found decreased pSTAT5 in subjects carrying the rs2104286 risk haplotype. Reduced IL-2R signaling did not result from lower CD25 expression on CD25hi cells; instead we detected increased CD25 expression on naive Treg from controls carrying the rs2104286 risk haplotype, and subjects with T1D and MS. However the rs2104286 risk haplotype correlated with increased soluble IL-2RA levels, suggesting that shedding of the IL-2R may account in part for the reduced IL-2R signaling associated with the rs2104286 risk haplotype. In addition to risk variants in IL2RA, we found that the T1D-associated risk variant of PTPN2rs1893217 independently contributed to diminished IL-2R signaling. However, even when holding genotype constant at IL2RA and PTPN2, we still observed a significant signaling defect in T1D and MS patients. Together, these data suggest that multiple mechanisms converge in disease leading to decreased response to IL-2, a phenotype that may eventually lead to loss of tolerance and autoimmunity.  相似文献   
55.

Homoarginine is an endogenous amino acid whose levels are reduced in patients with renal, cardio- and cerebrovascular disease. Moreover, low homoarginine concentrations independently predict morbidity and mortality in these patients. Besides endogenous synthesis, homoarginine is also a constituent of the human diet. The objective of the present study was to analyze the kinetics of orally supplemented homoarginine in human plasma by means of a pharmacometric approach. We developed a pharmacometric model to evaluate different dosing regimens, especially the regimen of 125 mg once weekly, based on a previous clinical study (n?=?20). The model was adapted to account for differences in baseline homoarginine plasma concentrations between healthy and diseased individuals. A novel dosing regimen of 25 mg once daily led to higher attainment of homoarginine reference concentrations using clinical trial simulations. With 25 mg/day, the trough concentration of only 6% of the older and 3.8% of the younger population was predicted to be below the target concentration of 2.0–4.1 µmol/L. In synopsis, the new dosing regimen recapitulates the kinetics of homoarginine in healthy individuals optimally.

  相似文献   
56.
The Legionella virulence factor Mip (macrophage infectivity potentiator) contributes to bacterial dissemination within infected lung tissue. The Mip protein, which belongs to the enzyme family of FK506-binding proteins (FKBP), binds specifically to collagen IV. We identified a surface-exposed Mip-binding sequence in the NC1 domain of human collagen IV α1. The corresponding collagen IV-derived peptide (P290) co-precipitated with Mip and competitively inhibited the Mip-collagen IV binding. Transmigration of Legionella pneumophila across a barrier of NCI-H292 lung epithelial cells and extracellular matrix was efficiently inhibited by P290. This significantly reduced transmigration was comparable to the inefficient transmigration of PPIase-negative Mip mutant or rapamycin-treated L. pneumophila. Based on NMR data and docking studies a model for the mode of interaction of P290 and Mip was developed. The amino acids of the hydrophobic cavity of Mip, D142 and to a lesser extent Y185 were identified to be part of the interaction surface. In the complex structure of Mip(77-213) and P290, both amino acid residues form hydrogen bonds to P290. Utilizing modelling, molecular dynamics (MD) simulations and structural data of human PPIase FKBP12, the most related human orthologue of Mip, we were able to propose optimized P290 variants with increased binding specificity and selectivity for the putative bacterial drug target Mip.  相似文献   
57.
Mutations in the FBXO7 (PARK15) gene have been implicated in a juvenile form of parkinsonism termed parkinsonian pyramidal syndrome (PPS), characterized by Parkinsonian symptoms and pyramidal tract signs. FBXO7 (F‐box protein only 7) is a subunit of the SCF (SKP1/cullin‐1/F‐box protein) E3 ubiquitin ligase complex, but its relevance and function in neurons remain to be elucidated. Here, we report that the E3 ligase FBXO7‐SCF binds to and ubiquitinates the proteasomal subunit PSMA2. In addition, we show that FBXO7 is a proteasome‐associated protein involved in proteasome assembly. In FBXO7 knockout mice, we find reduced proteasome activity and early‐onset motor deficits together with premature death. In addition, we demonstrate that NEX (neuronal helix–loop–helix protein‐1)‐Cre‐induced deletion of the FBXO7 gene in forebrain neurons or the loss of FBXO7 in tyrosine hydroxylase (TH)‐positive neurons results in motor defects, reminiscent of the phenotype in PARK15 patients. Taken together, our study establishes a vital role for FBXO7 in neurons, which is required for proper motor control and accentuates the importance of FBXO7 in proteasome function.  相似文献   
58.
59.
Our previous results revealed that Igs in lesions and single chain variable fragment Abs (scFv-Abs) generated from clonal B cells in the cerebrospinal fluid (CSF) from patients with multiple sclerosis (MS) bind to axons in MS brains. To study the axonal Ags involved in MS, we identified the glycolytic enzymes, triosephosphate isomerase (TPI) and GAPDH, using Igs from the CSF and scFv-Abs generated from clonal B cells in the CSF and in lesions from MS patients. Elevated levels of CSF-Abs to TPI were observed in patients with MS (46%), clinically isolated syndrome (CIS) suggestive of MS (40%), other inflammatory neurological diseases (OIND; 29%), and other noninflammatory neurological diseases (ONIND; 31%). Levels of GAPDH-reactive Abs were elevated in MS patients (60%), in patients with CIS (10%), OIND (14%), and ONIND (8%). The coexistence of both autoantibodies was detected in 10 MS patients (29%), and 1 CIS patient (3%), but not in patients with OIND/ONIND. Two scFv-Abs generated from the CSF and from lesions of a MS brain showed immunoreactivity to TPI and GAPDH, respectively. The findings suggest that TPI and GAPDH may be candidate Ags for an autoimmune response to neurons and axons in MS.  相似文献   
60.
Endothelial function is impaired in hypercholesterolemia and atherosclerosis, which is probably due to reduced biological activity of endothelium-derived nitric oxide (NO). NO is synthesized in functionally intact endothelium by oxidation of the terminal guanidino nitrogen atom(s) of the amino acid precursor, L-arginine. We applied stable isotope dilution techniques and gas chromatographic-mass spectrometric approaches to investigate metabolism of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate in hypercholesterolemic rabbits and controls. After 4 weeks on control or 1% cholesterol-enriched diet, rabbits received 267 +/- 6 micromol of L-[guanidino-(15)N(2)]-arginine/kg of body weight via gastric cannulation. (15)N-isotope content of L-arginine in plasma and in platelet lysates increased 2h later in both groups, and almost returned to baseline until 24h. (15)N-isotope content of plasma nitrite and nitrate also increased in both groups at 2h, and had almost returned to natural content 24h later. (15)N-isotope content of urinary nitrate was significantly increased in control animals in urines collected from 0 to 12, 12 to 24, and had returned to baseline in the urine sample collected from 24 to 48 h. In the cholesterol group only a slight, insignificant elevation of (15)N-isotope content was observed for urinary nitrate. The extent of conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate was strongly and inversely correlated to plasma concentration of the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), which was elevated in cholesterol-fed rabbits (R=0.77; p < 0.05). Our data show that baseline NO synthase turnover rate is reduced in rabbits during early hypercholesterolemia. Our study gives evidence that the mechanism of the impaired conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate most likely involves inhibition of NO synthase by ADMA, which is present in elevated concentrations in hypercholesterolemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号