首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有15条查询结果,搜索用时 125 毫秒
11.
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+-boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FOF1-ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.  相似文献   
12.
Gamma-butyrobetaine hydroxylase (GBBH) is a 2-ketoglutarate-dependent dioxygenase that catalyzes the biosynthesis of l-carnitine by hydroxylation of gamma-butyrobetaine (GBB). l-carnitine is required for the transport of long-chain fatty acids into mitochondria for generating metabolic energy. The only known synthetic inhibitor of GBBH is mildronate (3-(2,2,2-trimethylhydrazinium) propionate dihydrate), which is a non-hydroxylatable analog of GBB.To aid in the discovery of novel GBBH inhibitors by rational drug design, we have solved the three-dimensional structure of recombinant human GBBH at 2.0 Å resolution. The GBBH monomer consists of a catalytic double-stranded β-helix (DBSH) domain, which is found in all 2KG oxygenases, and a smaller N-terminal domain. Extensive interactions between two monomers confirm earlier observations that GBBH is dimeric in its biological state. Although many 2KG oxygenases are multimeric, the dimerization interface of GBBH is very different from that of related enzymes.The N-terminal domain of GBBH has a similar fold to the DUF971 superfamily, which consists of several short bacterial proteins with unknown function. The N-terminal domain has a bound Zn ion, which is coordinated by three cysteines and one histidine. Although several other 2KG oxygenases with known structures have more than one domain, none of them resemble the N-terminal domain of GBBH. The N-terminal domain may facilitate dimer formation, but its precise biological role remains to be discovered.The active site of the catalytic domain of GBBH is similar to that of other 2KG oxygenases, and Fe(II)-binding residues form a conserved His-X-Asp-Xn-His triad, which is found in all related enzymes.  相似文献   
13.
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10–15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.  相似文献   
14.
15.
Antonie van Leeuwenhoek - Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号