首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   9篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   14篇
  2020年   7篇
  2019年   3篇
  2018年   14篇
  2017年   8篇
  2016年   13篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   15篇
  2011年   23篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   7篇
  2006年   3篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
排序方式: 共有189条查询结果,搜索用时 458 毫秒
101.
An alkaline protease producerBacillus licheniformis strain was isolated from Van Lake in Turkey. The strain is Gram positive, aerobic, motile, sporulating rod-shaped bacterium. Spores were ellipsoidal and positioned central in nonswollen sporangium. The cells were able to grow well at a pH range of 5.7–10. The optimal growth temperature was found to be 37 °C. Growth at a wide range of NaCl concentration (from 0 to 20%) showed that BA17 is halotolerant. Main fatty acid composition of BA17 was anteiso-C15:0 and iso-C15∶0. The strain was presumptively identified asB. licheniformis according to 16S rDNA gene sequence analysis. The most appropriate medium for the growth and protease production is composed of 0.5% yeast extract, 0.5% NaNO3, 0.02% MgSO4\7H2O, 0.1% K2HPO4 and 0.5% maltose. The optimum temperature and pH of the alkaline protease of strain BA17 were found to be 60 °C and pH 11, respectively. The activity was completely lost in the presence of PMSF, suggesting that the preparation contains serine-alkaline protease(s).  相似文献   
102.
Chronic saturated fatty acid exposure causes β-cell apoptosis and, thus, contributes to type 2 diabetes. Although endoplasmic reticulum (ER) stress and reduced ER-to-Golgi protein trafficking have been implicated, the exact mechanisms whereby saturated fatty acids trigger β-cell death remain elusive. Using mass spectroscopic lipidomics and subcellular fractionation, we demonstrate that palmitate pretreatment of MIN6 β-cells promoted ER remodeling of both phospholipids and sphingolipids, but only the latter was causally linked to lipotoxic ER stress. Thus, overexpression of glucosylceramide synthase, previously shown to protect against defective protein trafficking and ER stress, partially reversed lipotoxic reductions in ER sphingomyelin (SM) content and aggregation of ER lipid rafts, as visualized using Erlin1-GFP. Using both lipidomics and a sterol response element reporter assay, we confirmed that free cholesterol in the ER was also reciprocally modulated by chronic palmitate and glucosylceramide synthase overexpression. This is consistent with the known coregulation and association of SM and free cholesterol in lipid rafts. Inhibition of SM hydrolysis partially protected against ATF4/C/EBP homology protein induction because of palmitate. Our results suggest that loss of SM in the ER is a key event for initiating β-cell lipotoxicity, which leads to disruption of ER lipid rafts, perturbation of protein trafficking, and initiation of ER stress.  相似文献   
103.
Halomonas smyrnensis AAD6T is a Gram-negative, aerobic, exopolysaccharide-producing, and moderately halophilic bacterium that produces levan, a fructose homopolymer with many potential uses in various industries. We report the draft genome sequence of H. smyrnensis AAD6T, which will accelerate research on the rational design and optimization of microbial levan production.  相似文献   
104.
Human serum Butyrylcholinesterase (BChE) is an important enzyme in detoxification with its capacity for hydrolyzing esters. The inhibitory effect of cisplatin (CDDP) and cyclophosphamide (CY) on BChE is characterized. Time dependent inhibition of BChE with both chemotherapeutics was rapid, reversible. CY was found as non-competitive inhibitor with Ki of 503.6 ± 50.4 μM. Time dependent CDDP studies displayed progressive inhibition. The constants for apparent dissociation (Ka), first order constant for the break down of the Michaelis complex (k + 2), and bimolecular rate (ka) were calculated as 6.38 × 10−5 M−1 min−1, 0.063 min−1, and 9.83 × 10−4 M, respectively. Enzyme protection could be achieved with moderate butyrylthiocholine concentrations (0.3 mM) but higher concentrations increased CDDP inhibition. Apparent Ki value for CDDP was 191.8 ± 71.2 μM. These results suggest that used in combination therapy, CY and CDDP cause considerable BChE inhibition and may aggravate conditions observed during chemotherapy.  相似文献   
105.
Unusual composition of an exopolymer (EP) from an obligate halophilic bacterium Chromohalobacter canadensis 28 has triggered an interest in development of an effective bioreactor process for its production. Its synthesis was investigated in 2‐L bioreactor at agitation speeds at interval 600‐1000 rpm, at a constant air flow rate of 0.5 vvm; aeration rates of 0.5, 1.0, and 1.5 vvm were tested at constant agitation rate of 900 rpm. EP production was affected by both, agitation and aeration. As a result twofold increase of EP yield was observed and additionally increased up to 3.08 mg/mL in a presence of surfactants. For effective scale‐up of bioreactors mass transfer parameters were estimated and lowest values of KLa obtained for the highest productivity fermentation was established. Emulsification activity of EP exceeded that of trade hydrocolloids xanthan, guar gum, and cellulose. A good synergism between EP and commercial cellulose proved its potential exploration as an enhancer of emulsifying properties of trade emulsions. A pronounced lipophilic effect of EP was established toward olive oil and liquid paraffin. Cultivation of human keratinocyte cells (HaCaT) with crude EP and purified γ‐polyglutamic acid (PGA) showed higher viability than control group.  相似文献   
106.
107.
108.
Cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are traditionally associated with the termination of acetylcholine mediated neural signaling. The fact that these ubiquitous enzymes are also found in tissues not involved in neurotransmission has led to search for alternative functions for these enzymes. Cholinesterases are reported to be involved in many lipid related disease states. Taking into view that lipases and cholinesterases belong to the same enzyme class and by comparing the catalytic sites, we propose a new outlook on the link between BChE and lipid metabolism. The lipogenic substrates of BChE that have recently emerged in contrast to traditional cholinesterase substrates are explained through the hydrolytic capacity of BChE for ghrelin, 4-methyumbelliferyl (4-mu) palmitate, and arachidonoylcholine and through endogenous lipid mediators such as cannabinoids like anandamide and essential fatty acids. The abundance of BChE in brain, intestine, liver, and plasma, tissues with active lipid metabolism, supports the idea that BChE may be involved in lipid hydrolysis. BChE is also regulated by various lipids such as linoleic acid, alpha-linolenic acid or dioctanoylglycerol, whereas AChE is inhibited. The finding that BChE is able to hydrolyze 4-mu palmitate at a pH where lipases are less efficient points to its role as a backup in lipolysis. In diseases such as Alzheimer, in which elevated BChE and impaired lipid levels are observed, the lipolytic activity of BChE might be involved. It is possible to suggest that fatty acids such as 4-mu palmitate, ghrelin, arachidonoylcholine, essential fatty acids, and other related lipid mediators regulate cholinesterases, which could lead to some sort of compensatory mechanism at high lipid concentrations.

  相似文献   

109.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号