首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   34篇
  国内免费   2篇
  2023年   5篇
  2022年   9篇
  2021年   35篇
  2020年   16篇
  2019年   33篇
  2018年   15篇
  2017年   13篇
  2016年   17篇
  2015年   51篇
  2014年   38篇
  2013年   47篇
  2012年   47篇
  2011年   63篇
  2010年   24篇
  2009年   18篇
  2008年   30篇
  2007年   30篇
  2006年   20篇
  2005年   22篇
  2004年   16篇
  2003年   14篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有612条查询结果,搜索用时 234 毫秒
121.
HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979–1989) and 382 modern (2000–2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a “consensus-like” founder virus, the median “background” frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were “pre-adapted” to the average host HLA profile was only ∼2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins.  相似文献   
122.
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.  相似文献   
123.
124.
The vulnerability of atheromatous plaques in the carotid artery may be related to several factors, the most important being the degree of severity of the endoluminal stenosis and the thickness of the fibrous cap. It has recently been shown that the plaque length can also affect the mechanical response significantly. However, in their study on the effect of the plaque length, the authors did not consider the variations of the plaque morphology and the shape irregularities that may exist independently of the plaque length. These aspects are developed in this paper. The mechanical interactions between the blood flow and an atheromatous plaque are studied through a numerical model considering fluid–structure interaction. The simulation is achieved using the arbitrary Lagrangian–Eulerian scheme in the COMSOL TM commercial finite element package. The stenosis severity and the plaque length are, respectively, set to 45% and 15 mm. Different shapes of the stenosis are modelled, considering irregularities made of several bumps over the plaque. The resulting flow patterns, wall shear stresses, plaque deformations and stresses in the fibrous cap reveal that the effects of the blood flow are amplified if the slope upstream stenosis is steep or if the plaque morphology is irregular with bumps. More specifically, the maximum stress in the fibrous cap is 50% larger for a steep slope than for a gentle slope. These results offer new perspectives for considering the shape of plaques in the evaluation of the vulnerability.  相似文献   
125.
Linking marine epizootics to a specific aetiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative real-time PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease.  相似文献   
126.
X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide (), has been used in several biological studies to augment the use of XCT scanning. Recently was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6–7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.  相似文献   
127.
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号