首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   63篇
  2023年   11篇
  2022年   13篇
  2021年   43篇
  2020年   21篇
  2019年   22篇
  2018年   30篇
  2017年   18篇
  2016年   24篇
  2015年   58篇
  2014年   56篇
  2013年   54篇
  2012年   59篇
  2011年   48篇
  2010年   27篇
  2009年   28篇
  2008年   36篇
  2007年   31篇
  2006年   23篇
  2005年   20篇
  2004年   23篇
  2003年   19篇
  2002年   14篇
  2001年   6篇
  1999年   1篇
  1998年   4篇
  1996年   3篇
  1994年   1篇
  1990年   3篇
  1980年   1篇
排序方式: 共有697条查询结果,搜索用时 31 毫秒
11.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   
12.
13.
Transforming growth factor-β (TGF-β) promotes extracellular matrix deposition by down-regulating the expression of matrix degrading proteinases and upregulating their inhibitors. Tissue inhibitor of metalloproteinases (TIMP)-3 is an ECM-associated specific inhibitor of matrix degrading metalloproteinases. Here, we have characterized the signaling pathways mediating TGF-β-induced expression of TIMP-3. Basal and TGF-β-induced TIMP-3 mRNA expression was abolished in Smad4-deficient mouse embryonic fibroblasts and restoring Smad4 expression rescued the response. Inhibition of Smad signaling by expression of Smad7 and dominant negative Smad3 completely abolished TGF-β-elicited expression of TIMP-3 in human fibroblasts, whereas overexpression of Smad3 enhanced it. Inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation with PD98059 and p38 mitogen-activated protein kinase activity by SB203580 resulted in suppression of TGF-β-induced TIMP-3 expression, indicating that ERK1/2 and p38 MAPK mediate the effect of TGF-β on TIMP-3 expression. Specific activation of p38α and ERK1/2 by constitutively active mutants of MKK3b or MEK1, respectively, and simultaneous co-expression of Smad3 resulted in induction of TIMP-3 expression in the absence of TGF-β indicating that Smad3 co-operates with p38 and ERK1/2 in the induction of TIMP-3 expression. These results demonstrate the complex interplay between Smad3, p38α, and ERK1/2 signaling in the regulation of TIMP-3 gene expression in fibroblasts, which may play a role in inflammation, tissue repair, and fibrosis.  相似文献   
14.
Molecular Biology Reports - Microsatellites are useful in studies of population genetics, sibship, and parentage. Here, we screened for microsatellites from multiple elasmobranch genomic libraries...  相似文献   
15.
In order to better understand the antioxidant behavior of a series of polyphenolic 2′-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV–vis spectroscopic method indicate that a hydroxyl group in position 5′ induces the highest antioxidant activity. Consequently, 2,2′,5′-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2′,5′-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa/fa) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2′,5′-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases.  相似文献   
16.
Matrix metalloproteinase 8 (MMP-8) is a tumor-suppressive protease that cleaves numerous substrates, including matrix proteins and chemokines. In particular, MMP-8 proteolytically activates IL-8 and, thereby, regulates neutrophil chemotaxis in vivo. We explored the effects of expression of either a WT or catalytically inactive (E198A) mutant version of MMP-8 in human breast cancer cell lines. Analysis of serum-free conditioned media from three breast cancer cell lines (MCF-7, SK-BR-3, and MDA-MB-231) expressing WT MMP-8 revealed elevated levels of IL-6 and IL-8. This increase was mirrored at the mRNA level and was dependent on MMP-8 catalytic activity. However, sustained expression of WT MMP-8 by breast cancer cells was non-permissive for long-term growth, as shown by reduced colony formation compared with cells expressing either control vector or E198A mutant MMP-8. In long-term culture of transfected MDA-MB-231 cells, expression of WT but not E198A mutant MMP-8 was lost, with IL-6 and IL-8 levels returning to base line. Rare clonal isolates of MDA-MB-231 cells expressing WT MMP-8 were generated, and these showed constitutively high levels of IL-6 and IL-8, although production of the interleukins was no longer dependent upon MMP-8 activity. These studies support a causal connection between MMP-8 activity and the IL-6/IL-8 network, with an acute response to MMP-8 involving induction of the proinflammatory mediators, which may in part serve to compensate for the deleterious effects of MMP-8 on breast cancer cell growth. This axis may be relevant to the recognized ability of MMP-8 to orchestrate the innate immune system in inflammation in vivo.  相似文献   
17.
The primary aim of this review was to evaluate the state of knowledge of the geographical distribution of all infectious diseases of clinical significance to humans. A systematic review was conducted to enumerate cartographic progress, with respect to the data available for mapping and the methods currently applied. The results helped define the minimum information requirements for mapping infectious disease occurrence, and a quantitative framework for assessing the mapping opportunities for all infectious diseases. This revealed that of 355 infectious diseases identified, 174 (49%) have a strong rationale for mapping and of these only 7 (4%) had been comprehensively mapped. A variety of ambitions, such as the quantification of the global burden of infectious disease, international biosurveillance, assessing the likelihood of infectious disease outbreaks and exploring the propensity for infectious disease evolution and emergence, are limited by these omissions. An overview of the factors hindering progress in disease cartography is provided. It is argued that rapid improvement in the landscape of infectious diseases mapping can be made by embracing non-conventional data sources, automation of geo-positioning and mapping procedures enabled by machine learning and information technology, respectively, in addition to harnessing labour of the volunteer ‘cognitive surplus’ through crowdsourcing.  相似文献   
18.
Quantifying the factors that predict parasite outbreak and persistence is a major challenge for both applied and fundamental biology. Key to understanding parasite prevalence and disease outbreaks is determining at what age individuals show signs of infection, and whether or not they recover. Age‐dependent patterns of the infection of a host population by parasites can indicate among‐individual heterogeneities in their susceptibility to, or rate of recovery from, parasite infections. Here, we present a cross‐sectional study of avian malaria in a long‐lived bird species, the mute swan Cygnus olor, examining age‐related patterns of parasite prevalence and modelling patterns of infection and recovery. One‐hundred and fifteen swans, ranging from one to nineteen years old, were screened for infection with Plasmodium, Haemoproteus and Leucocytozoon parasites. Infections with three cytochrome‐b lineages of Haemoproteus were found (pooled prevalence 67%), namely WW1 (26%), which is common in passerine birds, and two new lineages closely related to WW1: MUTSW1 (25%) and MUTSW2 (16%). We found evidence for age‐related infection in one lineage, MUTSW1. Catalytic models examining patterns of infection and recovery in the population suggested that infections in this population were not life‐long – recovery of individuals was included in the best fitting models. These findings support the results of recent studies that suggest hosts can clear infections, although patterns of infection‐related mortality in older birds remain to be studied in more detail.  相似文献   
19.

Background

Metabolic syndrome (MetS) is a constellation of factors including abdominal obesity, hyperglycemia, dyslipidemias, and hypertension that increase morbidity and mortality from diabetes and cardiovascular diseases and affects more than a third of the population in the US. Clozapine, an atypical antipsychotic used for the treatment of schizophrenia, has been found to cause drug-induced metabolic syndrome (DIMS) and may be a useful tool for studying cellular and molecular changes associated with MetS and DIMS. Mitochondria dysfunction, oxidative stress and inflammation are mechanisms proposed for the development of clozapine-related DIMS. In this study, the effects of clozapine on mitochondrial function and inflammation in insulin responsive and obesity-associated cultured cell lines were examined.

Methodology/Principal Findings

Cultured mouse myoblasts (C2C12), adipocytes (3T3-L1), hepatocytes (FL-83B), and monocytes (RAW 264.7) were treated with 0, 25, 50 and 75 µM clozapine for 24 hours. The mitochondrial selective probe TMRM was used to assess membrane potential and morphology. ATP levels from cell lysates were determined by bioluminescence assay. Cytokine levels in cell supernatants were assessed using a multiplex array. Clozapine was found to alter mitochondria morphology, membrane potential, and volume, and reduce ATP levels in all cell lines. Clozapine also significantly induced the production of proinflammatory cytokines IL-6, GM-CSF and IL12-p70, and this response was particularly robust in the monocyte cell line.

Conclusions/Significance

Clozapine damages mitochondria and promotes inflammation in insulin responsive cells and obesity-associated cell types. These phenomena are closely associated with changes observed in human and animal studies of MetS, obesity, insulin resistance, and diabetes. Therefore, the use of clozapine in DIMS may be an important and relevant tool for investigating cellular and molecular changes associated with the development of these diseases in the general population.  相似文献   
20.
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long‐term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long‐term nitrogen fertilization caused the evolution of less‐mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less‐mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long‐term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号