首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   76篇
  国内免费   1篇
  2023年   4篇
  2022年   8篇
  2021年   22篇
  2020年   11篇
  2019年   28篇
  2018年   21篇
  2017年   19篇
  2016年   30篇
  2015年   59篇
  2014年   54篇
  2013年   56篇
  2012年   82篇
  2011年   86篇
  2010年   35篇
  2009年   42篇
  2008年   84篇
  2007年   58篇
  2006年   25篇
  2005年   39篇
  2004年   28篇
  2003年   19篇
  2002年   29篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1988年   9篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1983年   3篇
  1981年   4篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   6篇
  1974年   3篇
  1973年   2篇
  1972年   5篇
  1968年   2篇
  1966年   2篇
  1953年   3篇
排序方式: 共有970条查询结果,搜索用时 21 毫秒
881.
The determination of the history and causes of recent eutrophication and intensified thermal stratification in Lake Victoria is still hampered by the sparsity of paleolimnologic coverage of the enormous lake. Five new diatom records from Ugandan waters now show that a transition from Aulacoseira-dominated planktonic assemblages to those dominated by long Nitzschia spp., occurred in northern coastal sites from the mid-1970s to mid-1980s. Similar transitions developed from the late 1960s to early 1970s offshore and from the 1940s to early 1950s along the Kenyan coast, suggesting a time-transgressive process. These changes are not readily attributable to the trophic effects of Nile perch population growth during the early 1980s, but more likely reflect responses to long-term nutrient enrichment and climatic instability in the region. The diversity of planktonic diatom communities has declined dramatically, and a namesake variety of Aulacoseira nyassensis may now be nearly extirpated. Although local phytoplankton communities varied considerably in the past, the current domination of diatom assemblages by Nitzschia is apparently unprecedented in the 15,000-year history of Lake Victoria.  相似文献   
882.
Interleukin (IL)-10 is an anti-inflammatory cytokine known to modulate the outcome of sepsis by decreasing pro-inflammatory cytokine production, including IL-12, a main activator of natural killer (NK) cells. We hypothesized that neutralization of IL-10 would increase NK and natural killer T (NKT) cell activation through increased IL-12 in a mouse model of bacterial peritonitis. NK and NKT cell activations were measured by CD69 expression on NK1.1+/CD3- and NK1.1+/CD3+ cells after cecal ligation and puncture (CLP). NK cells were significantly more activated in mice treated with anti-IL-10 antibodies, whereas no such effect was observed in NKT cells. Similarly, intracellular interferon gamma (IFN-gamma) levels were increased in NK cells of anti-IL-10-treated mice, but not in NKT cells. IL-12 and IL-18 levels were increased in both CLP groups, but in anti-IL-10-treated mice, early IL-12 and late IL-18 levels were significantly higher than in controls. Survival at 18 h after CLP was lower in anti-IL-10 mice, which was associated with increased liver neutrophil accumulation. In summary, these data show an activating effect of IL-10 on NK, but not on NKT cells after CLP, which corresponded with decreased survival, higher IFN-gamma production, and increased remote organ neutrophil accumulation. These effects were not mediated by IL-12 and IL-18 alone, and reinforce a role for NK cells in remote organ dysfunction following peritonitis.  相似文献   
883.
884.
885.
We have investigated the structures and stabilities of four different adenine quartets with alkali and halide ions in the gas phase and in water, using dispersion-corrected density functional theory at the BLYP-D/TZ2P level. First, we examine the empty quartets and how they interact with alkali cations and halide anions with formation of adenine quartet–ion complexes. Second, we examine the interaction in a stack, in which a planar adenine quartet interacts with a cation or anion in the periphery as well as in the center of the quartet. Interestingly, for the latter situation, we find that both cations and anions can stabilize a planar adenine quartet in a stack.  相似文献   
886.
The Hedgehog (Hh) signaling pathway regulates cell proliferation and differentiation in developing tissues, and abnormal activation of the Hh pathway has been linked to several tumor subsets. As a transducer of Hh signaling, the GPCR-like protein Smoothened (Smo) is a promising target for disruption of unregulated Hh signaling. A series of 1-amino-4-arylphthalazines was developed as potent and orally bioavailable inhibitors of Smo. A representative compound from this class demonstrated significant tumor volume reduction in a mouse medulloblastoma model.  相似文献   
887.
888.
Herein, we report the identification of RNA hairpin loops that bind derivatives of kanamycin A, tobramycin, neamine, and neomycin B via two-dimensional combinatorial screening, a method that screens chemical and RNA spaces simultaneously. An arrayed aminoglycoside library was probed for binding to a 6-nucleotide RNA hairpin loop library (4096 members). Members of the loop library that bound each aminoglycoside were excised from the array, amplified and sequenced. Sequences were analyzed with our newly developed RNA Privileged Space Predictor (RNA-PSP) program, which analyzes selected sequences to identify statistically significant trends. RNA-PSP identified the following unique trends: 5′UNNNC3′ loops for the kanamycin A derivative (where N is any nucleotide); 5′UNNC3′ loops for the tobramycin derivative; 5′UNC3′ loops for the neamine derivative; and 5′UNNG3′ loops for the neomycin B derivative. The affinities and selectivities of a subset of the ligand–hairpin loop interactions were determined. The selected interactions have Kd values ranging from 10 nM to 605 nM. Selectivities ranged from 0.4 to >200-fold. Interestingly, the results from RNA-PSP are able to qualitatively predict specificity based on overlap between the RNA sequences selected for the ligands. These studies expand the information available on small molecule–RNA motif interactions, which could be useful to design ligands targeting RNA.  相似文献   
889.
Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.  相似文献   
890.
Hematopoietic stem and progenitor cells (HSPCs) use specialized adhesive structures referred to as magnupodium to stay in hematopoietic niches. Bessey et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202005085) define new characteristics of the magnupodium, including centriole polarization and the necessary and sufficient role of CXCR4 signaling.

Hematopoietic stem and progenitor cells (HSPCs) need to stay in osteal and vascular niches in the bone marrow in the face of a massive flux of differentiating and maturing cells that might compete with or displace HSPCs. There have been only glimpses of the nature of the adhesive connection between HSPCs and the key niche cells. Bessy et al. use in vitro coculture systems with HSPCs and osteoblasts and/or endothelial cells, in conjunction with 3D immunofluorescence imaging, to define the nature of this critical cell–cell interface (1). In a microfluidic platform that provides HSPCs with a choice between osteoblasts and endothelial cells to establish a niche, Bessy et al. found that that HSPCs migrate into the synthetic osteal and vascular compartments and establish polarized interactions based on positioning of the centrioles toward the niche cell in the majority of observations. Bessy et al. propose that HSPCs form a specialized junction with niche cells characterized by polarity, adhesion, and stability, hallmarks of established synapses (2).Previous reports have focused on the role of a variety of cell projections in HSPC interactions with niche cells, including nanotubes many cell diameters in length and more substantial protrusions containing actinomyosin contractile systems that doubled the cell length. The latter appeared similar to the uropod of a migrating cell, except that it was attached at one end to the niche cell. Both types of structures were referred to as magnupodium due to their great relative dimensions. In microwell-based 1:1 coculture of HSPCs and osteoblasts, Bessy et al. clearly observe substantial protrusion emerging from HSPCs that are stably anchored to the osteoblast surface (1), which they refer to as magnupodium to follow the earlier precedents. The magnupodium allows the HSPC cell body to actively pivot about the stable attachment site, extensively surveying the 3D niche adjacent to the osteoblast while remaining firmly attached (1). While nanotubes and uropods are typically thought of as trailing structures in relation to cell migration (3), Bessy et al. conceptualize the magnupodium as the forward-facing synaptic structure of the niche bound HSPC; the dynamic cell body is viewed as the “tail” in this setting. This is an exciting inversion of the typical conventions and creates a framework for asking new questions and comparison to other synaptic systems.The HSPC niche requires the chemokine receptor CXCR4 on the HSPC and the chemokine SDF-1 on the stromal cell to establish a functional niche (4). Magnupodium formation with centriolar polarization is completely dependent upon CXCR4 function (Fig. 1; 1). They further demonstrate that polarized magnupodium formation by HSPCs is highly specific to bone marrow stromal cells, as HSPCs did not form a magnupodium with fibroblasts, and mature hematopoietic cells don’t form polarized magnupodium on osteoblasts. Importantly, the centrioles are not only oriented toward the magnupodium but are fully dissociated from the nucleus and positioned near to the tip of the magnupodium in contact with the niche cell. This is a critical point as docking of the centrioles directly at the synaptic cleft is a hallmark of immunological synapses (5, 6). The proteins enriched in the HSPC magnupodium include typical uropod proteins like ezrin and phosphorylated myosin II light chain. In contrast, CD44, which is often found in the uropod of migrating cells, is localized to the HSPC tail. CD133, lymphocyte function associated-1 (LFA-1), very late activation-4, the Arp2/3 complex, and the Golgi apparatus are found near the tip of magnupodium, consistent with synaptic adhesion and directed secretion. Thus, Bessy et al. strengthen the case that the magnupodium is a new type of communication structure that defines the HSPC niche. It will be important to directly test the potential for polarized secretion through the magnupodium to further investigate the synapse analogy.Open in a separate windowFigure 1.Magnupodium formation between HSPCs and osteoblasts and reductionist models. (A) Schematic of HSPC formation of a magnupodium with an osteoblast and potential receptor ligand interactions and cytoskeletal machinery. (B) Magnupodium-like structure formed by EBV transformed B cell on purified LFA-1. LMP, latent membrane protein (7). (C) Magnupodium formation in response to laterally mobile VCAM and mSCF (10).The magnupodium has implications for work on immune cell communication beyond HSPCs. Bessy et al. show that T cells and monocytes will not form a magnupodium-like structure with osteoblasts, which makes sense to avoid competition with HSPCs in the bone marrow, but this is not to say that a mature lymphocyte could never form a magnupodium in a relevant biological context. Early work with purified adhesion molecules revealed magnupodium-like structures formed by Epstein-Barr virus (EBV) transformed B lymphocytes when attached to supported lipid bilayers (SLBs) presenting purified LFA-1 (Fig. 1 B; 7). Time-lapse imaging revealed that the lymphoblasts were anchored in place for up to 16 h, the longest observation period (7). This is more durable than an antigen dependent immunological synapse (8). In light of results from Bessy et al., it’s surprising that an activated B cell line could form such a complex structure in response to engaging a single adhesion molecule. However, EBV encodes constitutively active surface receptors that mimic antigen receptor tyrosine kinase cascades, TNF receptor associated factor activation of NF-κB, and chemokine signaling (9). More recently, Hao et al. used SLBs containing laterally mobile vascular cell adhesion molecule (VCAM) and membrane anchored stem cell factor (mSCF) to trigger formation of a magnupodium-like structure by HSPCs (Fig. 1 C; 10). Hao et al. presented SDF1 in a laterally mobile form on an SLB and found that this presentation is not sufficient for magnupodium-like structure formation, whereas Bessy et al. presented SDF1 anchored to a solid surface and found that it is sufficient for magnupodium formation. This suggests that that the way in which SDF1 is presented on the osteoblast or endothelial cell, which could include the number of molecules per unit area or the lateral mobility, may be important for magnupodium formation. c-KIT signaling, triggered by mSCF, is similar in some respects to antigen receptor signaling in B cells. Neither of these studies investigated whether the centrioles are positioned near the protein-presenting SLB, which is critical to establishing if these structures are magnupodia according to the criteria proposed by Bessy et al. These SLB-based model systems should be helpful to further dissect signals sufficient for magnupodium formation.There could also be at least one physiological role for the magnupodium in B cell. Early in T cell help for antibody production by B cells, the antigen specific T and B cells meet at the boundary between the T cell zone and B cell follicle in secondary lymphoid tissues. The B cell and T cell do an intimate dance in which the B cell leads (11). The B cell migrates at ∼5 µm/min while dragging the T cell through the immunological synapse. In light of Bessy et al., it would be important to ask if the B cell side of the B–T immunological synapse is a magnupodium, creating a two-way communication interface in which both cells are polarized toward each other, even as one migrates in response to chemokine gradients. The criteria established by Bessy et al. could now be applied to the B–T synapse established in an appropriately engineered tissue-like environment. Depending upon the outcome of such experiments, this may suggest a potential for multitasking between motility directed by the leading lamellipodium and a synaptic interface through a magnupodium formed by the same cell.This concept of multitasking may also apply to HSPCs. HSPCs need to monitor many inputs to self-renew, differentiate, or even mobilize during inflammation. In polarized T cells, the free lamellipodium is much more sensitive than the uropod to antigen presenting cells (12). The magnupodium provides a solid connection between cells across which to exchange information over long periods, but the active waving by the HSPC tail in the 3D niche may provide opportunities to sense additional contact-dependent and/or soluble signals. In this regard it may be relevant that CD44 is part of this tail complex of the HSPC. CD44 is a critical sensor and regulator of inflammation (13), and it’s possible that it can better monitor the status of the niche from the tail than from the magnupodium, which is likely more focused on the state of the niche cell and providing the HSPC with its power to stay in the niche.In summary, Bessy et al. provide the field with a new perspective on the HSPC niche and help to explain the remarkable staying power and flexibility of HSPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号