首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   18篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1969年   4篇
  1966年   1篇
  1960年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
61.
Using cultured cells from bovine and rat aortas, we have examined the possibility that endothelial cells might regulate the growth of vascular smooth muscle cells. Conditioned medium from confluent bovine aortic endothelial cells inhibited the proliferation of growth-arrested smooth muscle cells. Conditioned medium from exponential endothelial cells, and from exponential or confluent smooth muscle cells and fibroblasts, did not inhibit smooth muscle cell growth. Conditioned medium from confluent endothelial cells did not inhibit the growth of endothelial cells or fibroblasts. In addition to the apparent specificity of both the producer and target cell, the inhibitory activity was heat stable and not affected by proteases. It was sensitive flavobacterium heparinase but not to hyaluronidase or chondroitin sulfate ABC lyase. It thus appears to be a heparinlike substance. Two other lines of evidence support this conclusion. First, a crude isolate of glycosaminoglycans (TCA-soluble, ethanol-precipitable material) from endothelial cell-conditioned medium reconstituted in 20 percent serum inhibited smooth muscle cell growth; glycosaminoglycans isolated from unconditioned medium (i.e., 0.4 percent serum) had no effect on smooth muscle cell growth. No inhibition was seen if the glycosaminoglycan preparation was treated with heparinase. Second, exogenous heparin, heparin sulfate, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate ABC, and hyaluronic acid were added to 20 percent serum and tested for their ability to inhibit smooth muscle cell growth. Heparin inhibited growth at concentrations as low as 10 ng/ml. Other glycosaminoglycans had no effect at doses up to 10 μg/ml. Anticoagulant and non- anticoagulant heparin were equally effective at inhibiting smooth muscle cell growth, as they were in vivo following endothelial injury (Clowes and Karnovsk. Nature (Lond.). 265:625-626, 1977; Guyton et al. Circ. Res. 46:625-634, 1980), and in vitro following exposure of smooth muscle cells to platelet extract (Hoover et al. Circ. Res. 47:578-583, 1980). We suggest that vascular endothelial cells may secrete a heparinlike substance in vivo which may regulate the growth of underlying smooth muscle cells.  相似文献   
62.
In recent years, the enzyme Ca2+/calmodulin-stimulated protein kinase II1 (CaM-PK II) as attracted a great deal of interest. CaM-PK II is the most abundant calmodulin-stimulated protein kinase in brain, where it is particularly enriched in neurons (Ouimet et al., 1984; Erondu and Kennedy, 1985; Lin et al., 1987; Scholz et al., 1988). Neuronal CaM-PK II has been suggested to be involved in several phenomena associated with synaptic plasticity (Lisman and Goldring, 1988; Kelly, 1992), including long-term potentiation (Malinow et al., 1988; Malenka et al.,1989), neurotransmission (Nichols et al., 1990; Siekevitz, 1991), and learning (for review, see Rostas, 1991). This enzyme has also been postulated to be selectively vulnerable in several pathological condition, including epilepsy/kindling (Bronstein et al.,1990; Wu et al., 1990), cerebral ischemia (Taft et al., 1988), and organophosphorus toxicity (Abou-Donia and Lapadula, 1990).  相似文献   
63.
A unique feature of neuronal calcium/calmodulin-stimulated protein kinase II (CaM-PK II) is its autophosphorylation. A number of sites are involved and, depending on the in vitro conditions used, three serine and six threonine residues have been tentatively identified as autophosphorylation sites in the alpha subunit. These sites fall into three categories. Primary sites are phosphorylated in the presence of calcium and calmodulin, but under limiting conditions of temperature, ATP, Mg2+, or time. Secondary sites are phosphorylated in the presence of calcium and calmodulin under nonlimiting conditions. Autonomous sites are phosphorylated in the absence of calcium and calmodulin after initial phosphorylation of Thr-286. Mechanisms that lead to a decrease in CaM-PK II autophosphorylation include the thermolability of the enzyme and the activity of protein phosphatases. A range of in vitro inhibitors of CaM-PK II autophosphorylation have recently been identified. Autophosphorylation of CaM-PK II leads to a number of consequences in vitro, including generation of autonomous activity and subcellular redistribution, as well as alterations in conformation, activity, calmodulin binding, substrate specificity, and susceptibility to proteolysis. It is established that CaM-PK II is autophos-phorylated in neuronal cells under basal conditions. Depolarization and/or activation of receptors that lead to an increase in intracellular calcium induces a marked rise in the autophosphorylation of CaM-PK II in situ. The incorporation of phosphate is mainly found on Thr-286, but other sites are also phosphorylated at a slower rate. One consequence of the increase in CaM-PK II autophosphorylation in situ is an increase in the level of autonomous kinase activity. It is proposed that the formation of an autonomous enzyme is only one of the consequences of CaM-PK II autophosphorylation in situ and that some of the other consequences observed in vitro will also be seen. CaM-PK II is involved in the control of neuronal plasticity, including neurotransmitter release and long-term modulation of postreceptor events. In order to understand the function of CaM-PK II, it will be essential to ascertain more fully the mechanisms of its autophosphorylation in situ, including especially the sites involved, the consequences of this autophosphorylation for the kinase activity, and the relationships between the state of CaM-PK II autophosphorylation and the physiological events within neurons.  相似文献   
64.
Using 51Cr-labelled P-815 mastocytoma cells as target cells and CS7BL/6 spleen cells sensitized against DBA/2 antigens as effector cells, it is shown that the variation in the observed specific 51Cr release over a broad range of experimental conditions can be explained on the basis of a simple physical model of the interaction process. The model assumes that a target cell can be destroyed only after contact with an effector cell, contact takes place on a random basis, one contact is sufficient, and that one effector cell can kill several targets with unchanged efficiency. The fraction of target cells destroyed (f) depends only on the incubation time (t), the number of effector cells (n) and a constant interaction probability (δ). Thus f = 1 ? e?nδt. However, the experimental measurement, the fraction of 51Cr specifically released into the supernatant during the assay, may not be the same as the fraction of target cells destroyed because it takes considerable time for the releasable 51Cr to be released from a damaged target cell. This can be overcome experimentally by following the standard 37 °C incubation with a further incubation at 45 °C during which there are no new lytic events but all previously damaged target cells release the remainder of their releasable 51Cr. The model enables one to obtain accurate measurements of relative effector cell frequency over a broad range of experimental conditions.  相似文献   
65.
66.
67.
Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40‐min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation. We also measured the effector responses by measuring plasma adrenocorticotrophic hormone, corticosterone, glucose and body temperature as well as activation of adrenal medulla protein kinases, TH protein, TH phosphorylation and TH activation. The LC, ventral tegmental area and adrenal medulla all had higher basal levels of Ser19 phosphorylation and lower basal levels of Ser31 phosphorylation than the mPFC, presumably because of their cell body versus nerve terminal location, while the adrenal medulla had the highest basal levels of Ser40 phosphorylation. Ser31 phosphorylation was increased in the LC at 20 and 40 min and in the mPFC at 40 min; TH activity was increased at 40 min in both tissues. There were significant increases in body temperature between 10 and 40 min, as well as increases in plasma adrenocorticotropic hormone at 20 min and corticosterone and glucose at 20 and 40 min. The adrenal medulla extracellular signal‐regulated kinase 2 was increased between 10 and 40 min and Ser31 phosphorylation was increased at 20 min and 40 min. Protein kinase A and Ser40 phosphorylation were increased only at 40 min. TH activity was increased between 20 and 40 min. TH protein and Ser19 phosphorylation levels were not altered in any of the brain regions or adrenal medulla over the first 40 min. These findings indicate that acute footshock stress leads to activation of TH in the LC, pre‐synaptic terminals in the mPFC and adrenal medullary chromaffin cells, as well as changes in activity of the hypothalamic‐pituitary‐adrenal axis.

  相似文献   

68.
Coral Reefs - Coral reefs are renowned for the complexity of their habitat structures and their resulting ability to host more species per unit area than any another marine ecosystem. Dedicated...  相似文献   
69.
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12-15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号