首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15966篇
  免费   1366篇
  国内免费   3篇
  2023年   160篇
  2022年   114篇
  2021年   273篇
  2020年   240篇
  2019年   253篇
  2018年   618篇
  2017年   523篇
  2016年   582篇
  2015年   520篇
  2014年   558篇
  2013年   932篇
  2012年   1295篇
  2011年   1423篇
  2010年   766篇
  2009年   540篇
  2008年   1038篇
  2007年   960篇
  2006年   924篇
  2005年   711篇
  2004年   729篇
  2003年   679篇
  2002年   613篇
  2001年   450篇
  2000年   547篇
  1999年   305篇
  1998年   152篇
  1997年   117篇
  1996年   103篇
  1995年   93篇
  1994年   90篇
  1993年   90篇
  1992年   96篇
  1991年   85篇
  1990年   63篇
  1989年   46篇
  1988年   53篇
  1987年   52篇
  1986年   24篇
  1985年   54篇
  1984年   45篇
  1983年   31篇
  1982年   42篇
  1981年   33篇
  1980年   27篇
  1979年   30篇
  1978年   27篇
  1977年   24篇
  1976年   23篇
  1974年   23篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
142.
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.  相似文献   
143.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
144.
The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.  相似文献   
145.
Aging dams and the rising efforts to restore stream ecosystems are increasing the number of dam decommissioning programs. Although dam decommissioning aims at improving in-stream habitat, biodiversity, and ecosystem functioning in the long term, it might also cause ecological impacts in the short term due to the mobilization of the sediment accumulated in the reservoir. Benthic biofilm in particular can be impaired by episodes of high turbidity and scouring. We conducted a multiple before-after/control-impact experiment to assess the effects of the drawdown of a large dam (42 m tall), a first step to its decommissioning, on biofilm structure (biomass and chlorophyll-a) and functioning (metabolism, nutrient uptake, and organic matter breakdown). Our results show that the reservoir drawdown reduced the autotrophic biofilm biomass (chlorophyll-a) downstream from the dam, which in turn lowered metabolism. However, nitrogen and phosphorus uptake by the biofilm was not affected. Organic matter breakdown was slower below the dam than in nearby undammed reaches before and during drawdown. All drawdown effects quickly disappeared and reaches downstream from the dam approached values found in nearby undammed reaches. Thus, our results indicate that the effects of reservoir drawdown on stream biofilms exist but may be small and disappear rapidly.  相似文献   
146.
A total of 522 girls and their families from low and middle social strate were examined in the northern part of Merida (Yucatan) during 1988 and 1989. Marital radius in the parental generation was relatively long (146 km), and it was six times longer for non-Maya and mixed couples than Maya. Living and housing conditions were similar for both Maya and non-Maya (mixed couples typically had an intermediate condition), except for sewage system (sanitation). The Maya income was 64% lower. Maya men and women were short. The girls from Merida were short, hyper-brachycephalic (short headed), and europrosopic (broad face). Among them, Maya girls were even shorter, more round-headed, and more broad-faced than non-Maya girls. Menarche occurred on the average at an age of 12.6 years in mothers and 12.1 years in daughters. As the generation time was about 25 years, there was a slow acceleration of maturation (0.2 years per decade). Presumably, also stature has increased in recent years.  相似文献   
147.
Under temperature sex determination (TSD), sex is determined by temperature during embryonic development. Depending on ecological and physiological traits and plasticity, TSD species may face demographic collapse due to climate change. In this context, asymmetry in bilateral organisms can be used as a proxy for developmental instability and, therefore, deviations from optimal incubation conditions. Using Tarentola mauritanica gecko as a model, this study aimed first to confirm TSD, its pattern and pivotal temperature, and second to assess the local adaptation of TSD and variation of asymmetry patterns across four populations under different thermal regimes. Eggs were incubated at different temperatures, and hatchlings were sexed and measured. The number of lamellae was counted in adults and hatchlings. Results were compatible with a TSD pattern with males generated at low and females at high incubation temperatures. Estimated pivotal temperature coincided with the temperature producing lower embryonic mortality, evidencing selection towards balanced sex ratios. The temperature of oviposition was conservatively selected by gravid females. Asymmetry patterns found were likely related to nest temperature fluctuations. Overall, the rigidity of TSD may compromise reproductive success, and demographic stability in this species in case thermal nest choice becomes constrained by climate change.  相似文献   
148.

Objectives

From an anthropological genetic perspective, little is known about the ethnogenesis of African descendants in Puerto Rico. Furthermore, historical interactions between Indigenous Caribbean and African descendant peoples that may be reflected in the ancestry of contemporary populations are understudied. Given this dearth of genetic research and the precedence for Afro-Indigenous interactions documented by historical, archeological, and other lines of evidence, we sought to assess the biogeographic origins of African descendant Puerto Ricans and to query the potential for Indigenous ancestry within this community.

Materials and Methods

Saliva samples were collected from 58 self-identified African descendant Puerto Ricans residing in Puerto Rico. We sequenced whole mitochondrial genomes and genotyped Y chromosome haplogroups for each male individual (n = 25). Summary statistics, comparative analyses, and network analysis were used to assess diversity and variation in haplogroup distribution between the sample and comparative populations.

Results

As indicated by mitochondrial haplogroups, 66% had African, 5% had European, and 29% had Indigenous American matrilines. Along the Y chromosome, 52% had African, 28% had Western European, 16% had Eurasian, and, notably, 4% had Indigenous American patrilines. Both mitochondrial and Y chromosome haplogroup frequencies were significantly different from several comparative populations.

Discussion

Biogeographic origins are consistent with historical accounts of African, Indigenous American, and European ancestry. However, this first report of Indigenous American paternal ancestry in Puerto Rico suggests distinctive features within African descendant communities on the island. Future studies expanding sampling and incorporating higher resolution genetic markers are necessary to more fully understand African descendant history in Puerto Rico.  相似文献   
149.
Tropical montane communities host the world's highest beta diversity of birds, a phenomenon usually attributed to community turnover caused by changes in biotic and abiotic factors along elevation gradients. Yet, empirical data on most biotic factors are lacking. Nest predation is thought to be especially important because it appears to be common and can change selective pressures underlying life history traits, which can alter competitive interactions. We monitored 2538 nests, 338 of which had known nest predators, to evaluate if nest predation changes along a tropical elevational gradient. We found that nest predation decreased with elevation, reflecting the loss of lowland predators that do not tolerate colder climates. We found different “super” nest predators at each elevation that accounted for a high percentage of events, suggesting that selection pressures exerted by nest predator communities may be less diffuse than has been hypothesized, at least for birds nesting in the understory.  相似文献   
150.
The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号