首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   29篇
  2021年   4篇
  2019年   7篇
  2018年   4篇
  2016年   3篇
  2015年   20篇
  2014年   14篇
  2013年   12篇
  2012年   16篇
  2011年   9篇
  2010年   14篇
  2009年   12篇
  2008年   12篇
  2007年   11篇
  2006年   12篇
  2005年   12篇
  2004年   15篇
  2003年   8篇
  2002年   6篇
  2001年   10篇
  2000年   16篇
  1999年   7篇
  1998年   6篇
  1997年   3篇
  1995年   5篇
  1994年   2篇
  1993年   11篇
  1992年   7篇
  1991年   7篇
  1990年   10篇
  1989年   14篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1976年   7篇
  1975年   4篇
  1974年   4篇
  1973年   8篇
  1972年   2篇
  1971年   4篇
  1969年   3篇
  1966年   3篇
排序方式: 共有383条查询结果,搜索用时 62 毫秒
81.
82.
Recognition of tRNA by the ribosome. A possible role of 5 S RNA   总被引:5,自引:0,他引:5  
S K Dube 《FEBS letters》1973,36(1):39-42
  相似文献   
83.
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.  相似文献   
84.
85.
Ten aspergilli (five each from marine and terrestrial habitats) were screened for siderophore production. All test isolates produced siderophores as indicated by a positive reaction in the FeCl(3) test, chrome azurol sulphonate assay, and chrome azurol sulphonate agar plate test. Further, the test isolates were compared for their siderophore production potential and chemical characteristics. Examination of the chemical nature of the siderophores revealed that all test isolates produced hydroxamate siderophores that were trihydroxamate hexadentates. Wide-spread occurrence of siderophores in marine isolates indicate their functional role in maintaining overall productivity of coastal waters. Among all test aspergilli, marine Aspergillus versicolor was found to be the largest siderophore producer (182.5 microg/mL desferrioxamine mesylate equivalent), least siderophore production was recorded in a marine strain of Aspergillus niger (3.5 microg/mL desferrioxamine mesylate equivalent).  相似文献   
86.
87.
Woody plant seedling establishment is constrained by herbivory in many semi‐arid savannas. We clipped shoots and cotyledons of three woody species 5‐day (=‘early’) or 28‐day (= ‘late’) post‐emergence to simulate herbivory. Seedlings had shoot apex, one or two cotyledon(s) removed, or were retained intact. Survival rates were ≥80%, ≥40% and ≥20% for Acacia nilotica, Acacia nigrescens and Faidherbia albida respectively. F. albida mobilized stored cotyledon reserves faster and consequently shed the cotyledons earlier than the two Acacia species. Cotyledons were shed off as late as 70 days post‐emergence with 5‐day shedding earlier than 28‐day and cotyledon life‐span decreasing with intensity of defoliation. Shoot apex removal 28‐day resulted in higher compensatory growth than 5‐day in all three species. Cotyledon removal had no effect on shoot length, while shoot apex removal reduced shoot length. In F. albida root growth was stimulated by shoot apex removal. We conclude that potential tolerance to herbivory in terms of seedling survival was of the order A. nilotica > A. nigrescens > F. albida, timing of shoot apex and cotyledon removal influenced seedling growth in terms of biomass and that shoot apex removal stimulated compensatory growth which is critical to seedling survival.  相似文献   
88.
89.
Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be used to generate specific hypotheses for studies on the effects of pesticides on the ovarian cycle, both in toxicological and epidemiological settings.  相似文献   
90.
Enzymes associated with release of iron from internalized ferrated siderophore (ferrisiderophore reductase), with damage to the cell at high iron concentration (superoxide dismutase) and siderophore synthesis (alkaline phosphatase), were examined in 3 test fungi viz., Aspergillus sp. ABp4, Aureobasidium pullulans and Rhizopus sp. Extracellular ferrisiderophore reductase activity was present in all the three fungi, but Aureobasidium pullulans, that showed the highest activity (84.3 microM min(-1)), was the only one to produce intra-cellular ferric reductase (147.9 microM min(-1)). Superoxide dismutase was produced by Aureobasidium pullulans and Rhizopus sp., but not by Aspergillus sp. ABp4, that showed intra-cellular enzyme activity in case of ferric reductase and alkaline phosphatase. Maximum SOD activity was seen in Aureobasidium pullulans both extra-cellularly (93.83 ng ml(-1)) and intra-cellularly (57.14 ng ml(-1)). All the test fungi examined, produced intra-cellular alkaline phosphatase. There was no extracellular alkaline phosphatase. Among the three fungi, Aureobasidium pullulans showed highest alkaline phosphatase activity (129.9 microM min(-1)) and Aspergillus sp. ABp4 the least (76.4 microM min(-1)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号