首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20007篇
  免费   2061篇
  国内免费   5篇
  2021年   233篇
  2020年   169篇
  2019年   208篇
  2018年   239篇
  2017年   243篇
  2016年   413篇
  2015年   573篇
  2014年   678篇
  2013年   838篇
  2012年   1104篇
  2011年   1104篇
  2010年   693篇
  2009年   679篇
  2008年   955篇
  2007年   950篇
  2006年   957篇
  2005年   875篇
  2004年   914篇
  2003年   893篇
  2002年   827篇
  2001年   426篇
  2000年   362篇
  1999年   386篇
  1998年   288篇
  1997年   242篇
  1996年   256篇
  1995年   222篇
  1994年   216篇
  1993年   199篇
  1992年   339篇
  1991年   282篇
  1990年   307篇
  1989年   308篇
  1988年   272篇
  1987年   248篇
  1986年   248篇
  1985年   249篇
  1984年   225篇
  1983年   232篇
  1982年   210篇
  1981年   176篇
  1980年   154篇
  1979年   194篇
  1978年   146篇
  1977年   146篇
  1976年   156篇
  1975年   125篇
  1974年   148篇
  1973年   138篇
  1972年   128篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
31.
32.
33.
Douglas Waugh 《CMAJ》1993,149(11):1704
  相似文献   
34.
Often we must balance being prepared to act quickly with being prepared to suddenly stop. The stop signal task (SST) is widely used to study inhibitory control, and provides a measure of the speed of the stop process that is robust to changes in subjects’ response strategy. Previous studies have shown that preparation affects inhibition. We used fMRI to separate activity that occurs after a brief (500 ms) warning stimulus (warning-phase) from activity that occurs during responses that follow (response-phase). Both of these phases could contribute to the preparedness to stop because they both precede stop signals. Warning stimuli activated posterior networks that signal the need for top-down control, whereas response phases engaged prefrontal and subcortical networks that implement top-down control. Regression analyses revealed that both of these phases affect inhibitory control in different ways. Warning-phase activity in the cerebellum and posterior cingulate predicted stop latency and accuracy, respectively. By contrast, response-phase activity in fronto-temporal areas and left striatum predicted go speed and stop accuracy, in pre-supplementary motor area affected stop accuracy, and in right striatum predicted stop latency and accuracy. The ability to separate hidden contributions to inhibitory control during warning-phases from those during response-phases can aid in the study of models of preparation and inhibitory control, and of disorders marked by poor top-down control.  相似文献   
35.
The enzymatic activity of salivary amylase bound to the surface of several species of oral streptococci was determined by the production of acid from starch and by the degradation of maltotetraose to glucose in a coupled, spectrophotometric assay. Most strains able to bind amylase exhibited functional enzyme on their surface and produced acid from the products of amylolytic degradation. These strains were unable to utilise starch in the absence of salivary amylase. Two strains failed to produce acid from starch, despite the presence of functional salivary amylase, because they could not utilise maltose. Strains that could not bind salivary amylase failed to produce acid from starch. In no case was all the bound salivary amylase active, and two strains of Streptococcus mitis which bound amylase did not exhibit any enzyme activity on their cell surface. The ability to bind amylase may confer a survival advantage on oral bacteria which inhabit hosts that consume diets containing starch.  相似文献   
36.
37.
38.
It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (Pc-iRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.  相似文献   
39.
40.
Summary Microorganisms were able to remove hydrocarbons (pentane and isobutane) from air by biological action in a columnar bioreactor with ceramic packing. The reactor was operated in a liquid continuous mode with gas recirculation and a slow addition of the organic-containing air. After a period of acclimation, the reactor has operated for 12 months with only pentane and isobutane as carbon sources. The gaseous hydrocarbons have been degraded throughout this period. The hydrocarbon removal rates measured between 1 and 2 g h–1 m–3. The microbes were shown to be able to degrade these gaseous hydrocarbons completely in a closed bioreactor without any additional nutrients.Research supported by the Advanced Industrial Concepts Division-Biological and Chemical Technologies Research. U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems. Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号