首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116356篇
  免费   2033篇
  国内免费   823篇
  2023年   65篇
  2022年   77篇
  2021年   490篇
  2020年   285篇
  2019年   373篇
  2018年   12281篇
  2017年   11007篇
  2016年   8164篇
  2015年   1930篇
  2014年   1753篇
  2013年   1953篇
  2012年   6298篇
  2011年   14610篇
  2010年   13132篇
  2009年   9171篇
  2008年   11232篇
  2007年   12609篇
  2006年   1492篇
  2005年   1638篇
  2004年   2047篇
  2003年   1924篇
  2002年   1649篇
  2001年   909篇
  2000年   817篇
  1999年   469篇
  1998年   198篇
  1997年   171篇
  1996年   137篇
  1995年   95篇
  1994年   92篇
  1993年   107篇
  1992年   185篇
  1991年   171篇
  1990年   97篇
  1989年   116篇
  1988年   91篇
  1987年   79篇
  1986年   71篇
  1985年   60篇
  1984年   60篇
  1983年   56篇
  1982年   31篇
  1978年   28篇
  1976年   33篇
  1975年   35篇
  1973年   33篇
  1972年   266篇
  1971年   298篇
  1970年   27篇
  1962年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The objective of this study was to determine the effects of farm management and environmental factors on preharvest spinach contamination with generic Escherichia coli as an indicator of fecal contamination. A repeated cross-sectional study was conducted by visiting spinach farms up to four times per growing season over a period of 2 years (2010 to 2011). Spinach samples (n = 955) were collected from 12 spinach farms in Colorado and Texas as representative states of the Western and Southwestern United States, respectively. During each farm visit, farmers were surveyed about farm-related management and environmental factors using a questionnaire. Associations between the prevalence of generic E. coli in spinach and farm-related factors were assessed by using a multivariable logistic regression model including random effects for farm and farm visit. Overall, 6.6% of spinach samples were positive for generic E. coli. Significant risk factors for spinach contamination with generic E. coli were the proximity (within 10 miles) of a poultry farm, the use of pond water for irrigation, a >66-day period since the planting of spinach, farming on fields previously used for grazing, the production of hay before spinach planting, and the farm location in the Southwestern United States. Contamination with generic E. coli was significantly reduced with an irrigation lapse time of >5 days as well as by several factors related to field workers, including the use of portable toilets, training to use portable toilets, and the use of hand-washing stations. To our knowledge, this is the first report of an association between field workers'' personal hygiene and produce contamination with generic E. coli at the preharvest level. Collectively, our findings support that practice of good personal hygiene and other good farm management practices may reduce produce contamination with generic E. coli at the preharvest level.  相似文献   
952.
Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.  相似文献   
953.
It has been recognized that ginsenoside Rg3 is not naturally produced in ginseng although this ginsenoside can accumulate in red ginseng as the result of a thermal process. In order to determine whether or not Rg3 is synthesized in ginseng, hairy roots were treated with methyl jasmonate (MJ). From HPLC analysis, no peak for Rg3 was observed in the controls. However, Rg3 did accumulate in hairy roots that were MJ-treated for 7?days. Rg3 content was 0.42?mg/g (dry weight). To gain more insight into the effects of MJ on UDP-glucosyltransferase (UGT) activity, we attempted to evaluate ginsenoside Rg3 biosynthesis by UGT. A new peak for putative Rg3 was observed, which was confirmed by LC-MS/MS analysis. Our findings indicate that the proteins extracted from our hairy root lines can catalyze Rg3 from Rh2. This suggests that our ginseng hairy root lines possess Rg3 biosynthesis capacity.  相似文献   
954.
Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native d-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as d-quinovosyl-10-deoxymethynolide, l-rhamnosyl-10-deoxymethynolide, l-olivosyl-10-deoxymethynolide, and d-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations. Their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with l-rhamnose displayed better antibacterial activity than parent compound YC-17 containing native sugar d-desosamine. The present study on relationships between chemical structures and antibacterial activities could be useful in generation of novel advanced antibiotics utilizing combinatorial biosynthesis approach.  相似文献   
955.
We have reported that nanowell array (NWA) can enhance electrochemical detection of molecular binding events by controlling the binding sites of the captured molecules. Using NWA biosensor based amperometric analysis, we have detected biological macromolecules such as DNA, protein or aptamers at low concentrations. In this research, we developed an impedimetric immunosensor based on wafer-scale NWA for electrochemical detection of stress-induced-phosphoprotein-1 (STIP-1). In order to develop NWA sensor through the cost-effective combination of high-throughput nanopattern, the NWA electrode was fabricated on Si wafer by krypton-fluoride (KrF) stepper semiconductor process. Finally, 12,500,000 ea nanowell with a 500 nm diameter was fabricated on 4 mm × 2 mm substrate. Next, by using these electrodes, we measured impedance to quantify antigen binding to the immunoaffinity layer. The limit of detection (LOD) of the NWA was improved about 100-fold compared to milli-sized electrodes (4 mm × 2 mm) without an NWA. These results suggest that wafer-scale NWA immunosensor will be useful for biosensing applications because their interface response is appropriate for detecting molecular binding events.  相似文献   
956.
Micro-organisms are vital for the functioning of all food webs and are the major drivers of the global biogeochemical cycles. The microbial community compositions and physicochemical conditions of the different water masses in the North Sea, a biologically productive sea on the northwestern European continental shelf, were studied during two summer cruises, in order to provide detailed baseline data for this region and examine its microbial biogeography. For each cruise the stations were clustered according to their physicochemical characteristics and their microbial community composition. The largest cluster, which covered most of the central and northern North Sea, consisted of stations that were characterized by a thermally stratified water column and had low chlorophyll a autofluorescence and generally low microbial abundances. The second main cluster contained stations that were dominated by picoeukaryotes and showed the influence of influxes of North Atlantic water via the English Channel and south of the Shetland Islands. The third main cluster was formed by stations that were dominated by cyanobacteria and nanoeukaryotes in the reduced salinity Norwegian Coastal and Skagerrak waters, while the fourth cluster represented the German Bight, a region with strong riverine input, high nutrient concentrations, and consequently high heterotrophic bacterial and viral abundances. Despite the complex and dynamic hydrographic nature of the North Sea, the consistent distinctions in microbiology between these different hydrographic regions during both cruises illustrate the strong links between the microbial community and its environment, as well as the possibility to use microorganisms for long-term monitoring of environmental change.  相似文献   
957.
Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-l-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-l-fucose resulted in a maximum GDP-l-fucose concentration of 291.5 mg/l, which corresponded to a 51 % enhancement compared with the control strain. In a fed-batch Baeyer–Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6 g/l was obtained, which corresponded to a 96 % enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.  相似文献   
958.
A gene encoding an amylopullulanase of the glycosyl hydrolase (GH) family 57 from Staphylothermus marinus (SMApu) was heterologously expressed in Escherichia coli. SMApu consisted of 639 amino acids with a molecular mass of 75.3 kDa. It only showed maximal amino acid identity of 17.1 % with that of Pyrococcus furiosus amylopullulanase in all identified amylases. Not like previously reported amylopullulanases, SMApu has no signal peptide but contains a continuous GH57N_Apu domain. It had the highest catalytic efficiency toward pullulan (k cat/K m , 342.34 s?1?mL?mg?1) and was extremely thermostable with maximal pullulan-degrading activity (42.1 U/mg) at 105 °C and pH?5.0 and a half-life of 50 min at 100 °C. Its activity increased to 116 % in the presence of 5 mM CaCl2. SMApu could also degrade cyclodextrins, which are resistant to the other amylopullulanases. The initial hydrolytic products from pullulan, γ-CD, and 6-O-maltooligosyl-β-CD were [6)-α-d-Glcp-(1?→?4)-α-d-Glcp-(1?→?4)-α-d-Glcp-(1→]n, maltooctaose, and single maltooligosaccharide plus β-CD, respectively. The final hydrolytic products from above-mentioned substrates were maltose and glucose. These results confirm that SMApu is a novel amylopullulanase of the family GH57 possessing the cyclodextrin-degrading activity of cyclomaltodextrinase.  相似文献   
959.
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.  相似文献   
960.
Using enrichment culture, Sphingobacterium multivorum GIN723 (KCCM80060) was isolated as having activity for deglycosylation of compound K and ginsenoside F1 to produce ginsenoside aglycons such as S-protopanaxadiol (PPD(S)) and S-protopanaxatriol (PPT(S)). Through BLAST search, purified enzyme from S. multivorum GIN723 was revealed to be the outer membrane protein. The purified enzyme from S. multivorum GIN723 has unique specificity for the glucose moiety. However, it has activity with PPD and PPT group ginsenosides such as ginsenosides Rb1, Rb2, Rb3, Rc, F2, CK, Rh2, Re, and F1. From these results, it was predicted that the enzyme has activity on several ginsenosides. Therefore, the biotransformation pathway from Rb1, which is a major, highly glycosylated compound of ginseng, was analyzed using high-performance liquid chromatography and electrospray ionization mass spectrometry/mass spectrometry. The dominant biotransformation pathway from Rb1 to PPD(S) was determined to be Rb1 → Gp-XVII → Gp-LXXV → CK → PPD(S). S. multivorum GIN723 can be used as a whole cell biocatalyst because its activity as whole cells is nine times higher than its activity as cell extracts. The specific activity of whole cells is 2.89 nmol/mg/min in the production of PPD(S). On the other hand, the specific activity of cell extracts is 0.32 nmol/mg/min. The productivity of this enzyme in whole cell form is 500 mg/1 l of cultured cell. Its optimum reaction condition is 10 mM of calcium ions added to a phosphate buffer with a pH of 8.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号