首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29354篇
  免费   2457篇
  国内免费   118篇
  2021年   418篇
  2020年   285篇
  2019年   413篇
  2018年   485篇
  2017年   390篇
  2016年   614篇
  2015年   962篇
  2014年   1050篇
  2013年   1500篇
  2012年   1658篇
  2011年   1528篇
  2010年   1117篇
  2009年   890篇
  2008年   1309篇
  2007年   1244篇
  2006年   1190篇
  2005年   1055篇
  2004年   1103篇
  2003年   1031篇
  2002年   1101篇
  2001年   965篇
  2000年   878篇
  1999年   789篇
  1998年   375篇
  1997年   380篇
  1996年   294篇
  1995年   300篇
  1994年   228篇
  1993年   273篇
  1992年   532篇
  1991年   506篇
  1990年   467篇
  1989年   429篇
  1988年   345篇
  1987年   339篇
  1986年   326篇
  1985年   370篇
  1984年   348篇
  1983年   306篇
  1982年   220篇
  1981年   229篇
  1980年   208篇
  1979年   272篇
  1978年   240篇
  1977年   262篇
  1976年   249篇
  1975年   251篇
  1974年   242篇
  1973年   233篇
  1972年   194篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
991.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   
992.
A method is described to measure photochemical activity in intact cells of Euglena under in vivo conditions. The method employs a cell wall digesting enzyme (cellulysin) to induce enough permeability in the cell walls and membranes in order to allow dyes, commonly used to investigate light-dependent electron transport reactions to enter, but without inducing a concomittant efflux of metabolites. Between 1 and 2 h of incubation in 5% (w/v) cellulysin provided conditions which allowed measurement of photosystem I-, II- and I+II-dependent electron transport with rates up to 600% higher than in control cells; whereas other cell wall degrading enzymes (cellulase and pectinase) still did not increase the entry of the dyes. Cellulysin up to 2 h of incubation had little or no effect on whole cell respiration, photosynthetic O2 evolution, or the export of potassium and (14C) labeled compounds out of cells; therefore cellulysin obviously did not change the normal habit or physiology of Euglena. Cellulysin (4 h digestion), cellulase and pectinase (2–4 h of incubation) on the other hand led to a lowering of respiration and light-dependent O2 evolution, and increased the efflux of K+, but apparently decreased that of (14C)labeled fixation products.Abbreviations DBMIB dibromothymoquinone - DCPIP 2,6-dichlorophenol-indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMMIB 2,3-dimethyl-5,6-methylenedioxy-p-benzoquinone - MV methylviologen - PSI photosystem I - PS II photosystem II  相似文献   
993.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   
994.
995.
996.
1. 1. The effect of stimulation of adenylate cyclase by pancreozymin-C-octapeptide on the cyclic AMP level of rat pancreatic fragments has been investigated.
2. 2. In normal Krebs-Ringer bicarbonate medium pancreozymin-C-octapeptide causes a slight increase in pancreatic cyclic AMP level; this increase can be considerably enhanced by incubation in a calcium-free incubation medium.
3. 3. The dose-responce curve for pancreazymin-C-octapeptide in calcium-free medium is shifted to lower peptide concentrations, compared to the curve in normal Krebs-Ringer bicarbonate medium.
4. 4. The maximal stimulatory effect of pancreozymin-C-octapeptide id obtained at a 1-methyl-3-isobutylxanthine concentration of 10 mM.
5. 5. It suffices to lower the Ca2+-concentration of the medium from 2.5 to 1.5 mM to get the maximal increase in cyclic AMP content under influence of pancreozymin-C-octapeptide.
6. 6. It is concluded that extracellular calcium antagonizes the stimulation of adenylate cyclase by pancreozymin-C-octapeptide. This suggest that a low cytoplasmic Ca2+-concentration is required for the maximal response of acinar cell adenylate cyclase to pancreozymin.
Keywords: cyclic AMP formation; Ca2+; Pancreozymin-C-octapeptide; Adeny; ate cyclase; (Rat pancreas)  相似文献   
997.
Rabbit synaptosomes have been used to study the effect of the base-exchange reaction in membrane phospholipids on -aminobutyric acid (GABA) transport in vitro. The uptake of GABA was measured after a base-exchange reaction with ethanolamine, choline, orl-serine and after subsequent displacement of these exchanged moieties from lipid by bases of similar or different structures which were added to the synaptosomal medium. Serine incorporation stimulated GABA transport, but its displacement from membrane lipid by choline or ethanolamine induced an inhibition of GABA transport. Ethanolamine incorporation inhibited GABA transport, but its displacement by serine or choline resulted in stimulation of GABA uptake. Choline incorporation also inhibited GABA transport, although less than ethanolamine. The pool size of synaptosomal phospholipids, presumably involved in GABA uptake, accounted for 0.2 to 10% of the total content of membrane phospholipid. Thus, alteration of phospholipid compositior by exchange of the lipid hydrophilic head-groups influences the extent GABA uptake into rabbit synaptosomes.  相似文献   
998.
999.
The lipid dynamics of the adrenocortical microsomal membranes was studied by monitoring the fluorescence anisotropy and excited state lifetime of a set of anthroyloxy fatty acid probes (2-, 7-, 9- and 12-(9-anthroyloxy)-stearic acid (AP) and 16-(9-anthroyloxy)palmitic acid (AS). It was found that a decreasing polarity gradient from the aqueous membrane interface to the membrane interior, was present. This gradient was not modified by the proteins, as evidenced by comparison of complete membranes and derived liposomes, suggesting that the anthroyloxy probes were not in close contact with the proteins. An important change of the value of the mean rotational relaxation time as a function of the position of the anthroyl ring along the acyl chain was evidenced. In the complete membranes, a relatively more fluid medium was evidenced in the C16 as compared to the C2 region, while the rotational motion appeared to be the most hindered at the C7–C9 level. In the derived liposomes, a similar trend was observed but the mobility was higher at all levels. The decrease of the mean rotational relaxation time was more important for 12-AS and 16-AP. Temperature dependence of the mean rotational relaxation time of 2-AS, 12-AS and 16-AP in the complete membranes revealed the existence of a lipid reorganization occurring around 27°C and concerning mainly the C16 region. The extent to which the acyl chain reacted to this perturbation at the C12 level depended on pH. The presence of proteins increased the apparent magnitude of this reorganization and also modified the critical temperature from approx. 23°C in the derived liposomes to approx. 27°C in the complete membranes. Thermal dependence of the maximum velocity of the 3-oxosteroid Δ54-isomerase, the second enzyme in the enzymatic sequence, responsible for the biosynthesis of the 3-oxo4-steroids in the adrenal cortex microsomes, was studied. The activation energy of the catalyzed reaction was found to be low and constant (2–5 kcal · mol?1) in the temperature range 16–40°C at pH 7.5, 8.5 and 9, corresponding to the minimum, intermediate and maximum rate, respectively. A drastic increase of the activation energy (20 kcal · mol?1) was observed at temperature below 16°C at pH 7.5. A correlated change of the pKESapp as function of temperature was detected; at 36°C pKESapp = 8.3 while at 13°C the value shifted to 8.7. The pH range of the group ionization was narrower at 13°C. In contrast with the behaviour of the 3β-hydroxy5-steroid dehydrogenase, the 3-oxosteroid Δ54-isomerase was apparently unaffected by the lipid reorganization at 27°C. It is suggested that this enzyme possesses a different and more fluid lipid environment than the bulk lipids.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号