首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6956篇
  免费   714篇
  国内免费   383篇
  2023年   49篇
  2022年   59篇
  2021年   220篇
  2020年   180篇
  2019年   227篇
  2018年   252篇
  2017年   210篇
  2016年   275篇
  2015年   380篇
  2014年   408篇
  2013年   475篇
  2012年   619篇
  2011年   560篇
  2010年   380篇
  2009年   349篇
  2008年   435篇
  2007年   383篇
  2006年   338篇
  2005年   320篇
  2004年   310篇
  2003年   319篇
  2002年   296篇
  2001年   205篇
  2000年   150篇
  1999年   135篇
  1998年   64篇
  1997年   52篇
  1996年   36篇
  1995年   24篇
  1994年   30篇
  1993年   12篇
  1992年   38篇
  1991年   32篇
  1990年   22篇
  1989年   15篇
  1988年   21篇
  1987年   12篇
  1986年   10篇
  1985年   19篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   6篇
  1979年   9篇
  1978年   8篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1973年   6篇
  1969年   7篇
排序方式: 共有8053条查询结果,搜索用时 484 毫秒
81.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   
82.
Electrochemically active biofilms are capable of exchanging electrons with solid electron acceptors and have many energy and environmental applications such as bioelectricity generation and environmental remediation. The performance of electrochemically active biofilms is usually dependent on c-type cytochromes, while biofilm development is controlled by a signal cascade mediated by the intracellular secondary messenger bis-(3ʹ-5ʹ) cyclic dimeric guanosine monophosphate (c-di-GMP). However, it is unclear whether there are any links between the c-di-GMP regulatory system and the expression of c-type cytochromes. In this study, we constructed a S. oneidensis MR-1 strain with a higher cytoplasmic c-di-GMP level by constitutively expressing a c-di-GMP synthase and it exhibited expected c-di-GMP-influenced traits, such as lowered motility and increased biofilm formation. Compared to MR-1 wild-type strain, the high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pM of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway, including CymA, MtrA, MtrB, MtrC and OmcA. Furthermore, single-cell Raman microspectroscopy (SCRM) revealed a great increase of c-type cytochromes in the high c-di-GMP strain as compared to MR-1 wild-type strain. Our results reveal for the first time that the c-di-GMP regulation system indirectly or directly positively regulates the expression of cytochromes involved in the extracellular electron transport (EET) in S. oneidensis, which would help to understand the regulatory mechanism of c-di-GMP on electricity production in bacteria.  相似文献   
83.
84.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
85.
86.
Heart failure (HF) is a medical condition inability of the heart to pump sufficient blood to meet the metabolic demand of the body to take place. The number of hospitalized patients with cardiovascular diseases is estimated to be more than 1 million each year, of which 80% to 90% of patients ultimately progress to decompensated HF. Digitalis glycosides exert modest inotropic actions when administered to patients with decompensated HF. Although its efficacy in patients with HF and atrial fibrillation is clear, its value in patients with HF and sinus rhythm has often been questioned. A series of recent studies have cast serious doubt on the benefit of digoxin when added to contemporary HF treatment. We are hypothesizing the role and mechanism of exosome and its biological constituents responsible for worsening the disease state and mortality in decompensated HF patients on digitalis.  相似文献   
87.
The progression of diabetic cardiomyopathy is related to cardiomyocyte dysfunction and apoptosis. Our previous studies showed that asporin (ASPN) was significantly increased in the myocardium of db/db mice through proteomics, and grape seed procyanidin B2 (GSPB2) significantly inhibited the expression of ASPN in the heart of db/db mice. We report here that ASPN played a critical role in glycated low‐density lipoproteins (gly‐LDL) induced‐cardiomyocyte apoptosis. We found that gly‐LDL upregulated ASPN expression. ASPN increased H9C2 cardiomyocyte apoptosis with down‐regulation of Bcl‐2, upregulation of transforming growth factor‐β1, Bax, collagen III, fibronectin, and phosphorylation of smad2 and smad3. However, GSPB2 treatment reversed ASPN‐induced impairments in H9C2 cardiomyocytes. These results provide evidence for the cardioprotective action of GSPB2 against ASPN injury, and thus suggest a new target for fighting against diabetic cardiomyopathy.  相似文献   
88.
Scyllo‐inositol (SI), a stereoisomer of inositol, is regarded as a promising therapeutic agent for Alzheimer's disease. Here, an in vitro cofactor‐balance biotransformation for the production of SI from myo‐inositol (MI) by thermophilic myo‐inositol 2‐dehydrogenase (IDH) and scyllo‐inositol 2‐dehydrogenase (SIDH) is presented. These two enzymes (i.e., IDH and SIDH from Geobacillus kaustophilus) are co‐expressed in Escherichia coli BL21(DE3), and E. coli cells containing the two enzymes are permeabilized by heat treatment as whole‐cell catalysts to convert MI to SI. After condition optimizations about permeabilized temperature, reaction temperature, and initial MI concentration, about 82 g L?1 of SI is produced from 250 g L?1 of MI within 24 h without any cofactor supplementation. This final titer of SI produced is the highest to the authors’ limited knowledge. This study provides a promising method for the large‐scale industrial production of SI.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号