首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   31篇
  国内免费   1篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   38篇
  2020年   17篇
  2019年   16篇
  2018年   22篇
  2017年   17篇
  2016年   21篇
  2015年   26篇
  2014年   39篇
  2013年   50篇
  2012年   64篇
  2011年   56篇
  2010年   31篇
  2009年   29篇
  2008年   39篇
  2007年   28篇
  2006年   19篇
  2005年   14篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1991年   3篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1979年   3篇
  1954年   1篇
排序方式: 共有591条查询结果,搜索用时 125 毫秒
581.
Due to hostile condition of red mud (RM), its utilization for vegetation is restricted. Therefore, RM with biowastes as soil amendment may offer suitable combination to support plant growth with reduced risk of metal toxicity. To evaluate the effects of RM on soil properties, plant growth performance, and metal accumulation in lemongrass, a study was conducted using different RM concentrations (0, 5, 10, and 15% w/w) in soil amended with biowastes [cow dung manure (CD) or sewage-sludge (SS)]. Application of RM in soil with biowastes improved organic matter and nutrient contents and caused reduction in phytoavailable metal contents. Total plant biomass was increased under all treatments, maximally at 5% RM in soil with SS (91.4%) and CD (51.7%) compared to that in control (no RM and biowastes). Lemongrass acted as a potential metal-tolerant plant as its metal tolerance index is >100%. Based on translocation and bioconcentration factors, lemongrass acted as a potential phytostabilizer of Fe, Mn, and Cu in roots and was found efficient in translocation of Al, Zn, Cd, Pb, Cr, As, and Ni from roots to shoot. The study suggests that 5% RM with biowastes preferably SS may be used to enhance phytoremediation potential of lemongrass.  相似文献   
582.
Research examining the association between exposure to a wide range of adverse childhood experiences (ACEs) and accelerated biological aging in older adults is limited. The purpose of this study was to examine the association of ACEs, both as a cumulative score and individual forms of adversity, with epigenetic age acceleration assessed using the DNA methylation (DNAm) GrimAge and DNAm PhenoAge epigenetic clocks in middle and older-aged adults. This cross-sectional study analyzed baseline and first follow-up data on 1445 participants aged 45–85 years from the Canadian Longitudinal Study on Aging (CLSA) who provided blood samples for DNAm analysis. ACEs were assessed using a validated self-reported questionnaire. Epigenetic age acceleration was estimated by regressing each epigenetic clock estimate on chronological age. Cumulative ACEs score was associated with higher DNAm GrimAge acceleration (β: 0.07; 95% CI: 0.02, 0.11) after adjusting for covariates. Childhood exposure to parental separation or divorce (β: 0.06; 95% CI: 0.00, 0.11) and emotional abuse (β: 0.06; 95% CI: 0.00, 0.12) were associated with higher DNAm GrimAge acceleration after adjusting for other adversities and covariates. There was no statistical association between ACEs and DNAm PhenoAge acceleration. Early life adversity may become biologically embedded and lead to premature biological aging, in relation to DNAm GrimAge, which estimates risk of mortality. Strategies that increase awareness of ACEs and promote healthy child development are needed to prevent ACEs.  相似文献   
583.
International Microbiology - Eukaryotic cells respond to environmental cues through mitogen activated protein kinase (MAPK) signaling pathways. Each MAPK cascade is specific to particular stimuli...  相似文献   
584.
585.
586.
587.
Gastrin-releasing peptide (GRP) plays a major role in the development and maintenance of lung epithelial cells by promoting cell division, whereas its suppression causes growth arrest and apoptosis. The present study shows that human bronchial epithelial BEAS-2B cells challenged with lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, downregulated GRP expression and induced apoptosis via upregulation of p53 and active caspase-3, signifying the importance of GRP in lung epithelial cell survival. However, in the presence of epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, BEAS-2B cells resisted LPS-induced apoptosis and restored the expression of GRP and its downstream effectors such as epidermal growth factor receptor and NF-κB, as analysed by immunoblotting and qPCR. Based on our findings, we objectify that cytoprotective functions of EGCG, via upregulation of GRP in cells challenged with LPS, are novel and can be further explored in a therapeutic point of view for diseases such as septic shock.  相似文献   
588.
Chronic kidney disease (CKD) is emerging as one of the major causes of the increase in mortality rate and is expected to become 5th major cause by 2050. Many studies have shown that it is majorly related to various risk factors, and thus becoming one of the major health issues around the globe. Early detection of renal disease lowers the overall burden of disease by preventing individuals from developing kidney impairment. Therefore, diagnosis and prevention of CKD are becoming the major challenges, and in this situation, biosensors have emerged as one of the best possible solutions. Biosensors are becoming one of the preferred choices for various diseases diagnosis as they provide simpler, cost-effective and precise methods for onsite detection. In this review, we have tried to discuss the globally developed biosensors for the detection of CKD, focusing on their design, pattern, and applicability in real samples. Two major classifications of biosensors based on transduction systems, that is, optical and electrochemical, for kidney disease have been discussed in detail. Also, the major focus is given to clinical biomarkers such as albumin, creatinine, and others related to kidney dysfunction. Furthermore, the globally developed sensors for the detection of CKD are discussed in tabulated form comparing their analytical performance, response time, specificity as well as performance in biological fluids.  相似文献   
589.
Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1 mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100 ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.  相似文献   
590.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号