首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   49篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   4篇
  2019年   3篇
  2018年   12篇
  2017年   16篇
  2016年   19篇
  2015年   19篇
  2014年   33篇
  2013年   35篇
  2012年   53篇
  2011年   65篇
  2010年   43篇
  2009年   32篇
  2008年   62篇
  2007年   47篇
  2006年   39篇
  2005年   34篇
  2004年   37篇
  2003年   35篇
  2002年   34篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   9篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有707条查询结果,搜索用时 15 毫秒
631.
632.
The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.  相似文献   
633.
634.
Carbohydrates are a desirable biomass compound for the generation of several biofuels. Phosphorus nutrient limitation causes a significant increase in the carbohydrate content of the cyanobacterium Arthrospira (Spirulina) platensis. Carbohydrates accumulated up to a content of 63.09?±?3.43?% (±SD) in both batch and semi-continuous cultures. In order the production of carbohydrate-rich biomass through nutrient limitation to be maximized, it is suggested that the limited nutrients have to be supplied in amounts that they on one hand can support the biomass production while on the other hand they alter the composition of the biomass. In this study, phosphorus of 1.82?±?0.16?mg g?1 of dry biomass was the optimized amount for the maximization of carbohydrates production by A. platensis. Regarding the need to decrease the application amounts of nutrients for biomass production, this study demonstrates that the phosphorus supply could be decreased an order of magnitude with no significant decrease in biomass production. In addition, it was observed that biomass rich in carbohydrates bio-flocculates, during settling without the addition of any flocculation agent or any other intervention. The bio-flocculation efficiency appears to be related with the carbohydrate content of the biomass. In maximum carbohydrate content (60?%), the biomass bio-flocculated at 68.49?±?7.73?% the first 15?min and reached 80.25?±?5.58?% 60?min after settling. The produced carbohydrates might be used as feedstock for biofuel generation, while the bio-flocculation and the overall settling characteristics of the carbohydrate-rich biomass could make its harvesting process much easier.  相似文献   
635.
636.
The biomass degrading enzymatic potential of 101 thermophilic bacterial strains isolated from a volcanic environment (Santorini, Aegean Sea, Greece) was assessed. 80?% of the strains showed xylanolytic activity in Congo Red plates, while only eight could simultaneously hydrolyze cellulose. Fifteen isolates were selected on the basis of their increased enzyme production, the majority of which was identified as Geobacilli through 16S rDNA analysis. In addition, the enzymatic profile was evaluated in liquid cultures using various carbon sources, a procedure that revealed lack of correlation on xylanase levels between the two cultivation modes and the inability of solid CMC cultures to fully unravel the cellulose degrading potential of the isolates. Strain SP24, showing more than 99?% 16S DNA similarity with Geobacillus sp. was further studied for its unique ability to simultaneously exhibit cellulase, xylanase, β-glucosidase and β-xylosidase activities. The first two enzymes were produced mainly extracellularly, while the β-glycosidic activities were primarily detected in the cytosol. Maximum enzyme production by this strain was attained using a combination of wheat bran and xylan in the growth medium. Bioreactor cultures showed that aeration was necessary for both enhanced growth and enzyme production. Aeration had a strong positive effect on cellulase production while it negatively affected expression of β-glucosidase. Xylanase and β-xylosidase production was practically unaffected by aeration levels.  相似文献   
637.
Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM's large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM's ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis.  相似文献   
638.
639.
The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies.  相似文献   
640.
Cobalt(II) complexes with the non-steroidal anti-inflammatory drug naproxen in the presence or absence of nitrogen-donor heterocyclic ligands (pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been synthesized and characterized with physicochemical and spectroscopic techniques. The deprotonated naproxen acts as monodentate ligand coordinated to Co(II) ion through a carboxylato oxygen. The crystal structure of [bis(aqua)bis(naproxenato)bis(pyridine)cobalt(II)], 2 has been determined by X-ray crystallography. The EPR spectrum of complex 2 in frozen solution reveals that it retains its structure. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and [(2,2′-bipyridine)bis(methanol)bis(naproxenato)cobalt(II)] exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes recorded in DMSO solution and in the presence of CT DNA in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that they can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. Naproxen and its cobalt(II) complexes exhibit good binding propensity to human or bovine serum albumin proteins having relatively high binding constant values. The antioxidant activity of the compounds has been evaluated indicating their high scavenging activity against hydroxyl free radicals and superoxide radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号