首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   48篇
  国内免费   1篇
  2023年   8篇
  2022年   8篇
  2021年   33篇
  2020年   24篇
  2019年   25篇
  2018年   22篇
  2017年   20篇
  2016年   27篇
  2015年   68篇
  2014年   50篇
  2013年   78篇
  2012年   123篇
  2011年   105篇
  2010年   45篇
  2009年   60篇
  2008年   76篇
  2007年   71篇
  2006年   54篇
  2005年   56篇
  2004年   65篇
  2003年   46篇
  2002年   42篇
  2001年   4篇
  2000年   3篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1171条查询结果,搜索用时 265 毫秒
141.
142.
Drug-membrane interactions of the candesartan cilexetil (TCV-116) have been studied on molecular basis by applying various complementary biophysical techniques namely differential scanning calorimetry (DSC), Raman spectroscopy, small and wide angle X-ray scattering (SAXS and WAXS), solution (1)H and (13)C nuclear magnetic resonance (NMR) and solid state (13)C and (31)P (NMR) spectroscopies. In addition, (31)P cross polarization (CP) NMR broadline fitting methodology in combination with ab initio computations has been applied. Finally molecular dynamics (MD) was applied to find the low energy conformation and position of candesartan cilexetil in the bilayers. Thus, the experimental results complemented with in silico MD results provided information on the localization, orientation, and dynamic properties of TCV-116 in the lipidic environment. The effects of this prodrug have been compared with other AT(1) receptor antagonists hitherto studied. The prodrug TCV-116 as other sartans has been found to be accommodated in the polar/apolar interface of the bilayer. In particular, it anchors in the mesophase region of the lipid bilayers with the tetrazole group oriented toward the polar headgroup spanning from water interface toward the mesophase and upper segment of the hydrophobic region. In spite of their localization identity, their thermal and dynamic effects are distinct pointing out that each sartan has its own fingerprint of action in the membrane bilayer, which is determined by the parameters derived from the above mentioned biophysical techniques.  相似文献   
143.
144.
Reactive-nitrogen species, such as peroxynitrite (ONOO) and nitryl chloride (NO2Cl), react with the aromatic ring of tyrosine in soluble amino acids and in proteins to form 3-nitrotyrosine. The extent of nitration can be quantified by measuring 3-nitrotyrosine in biological matrices, such as blood, urine, and tissue. This article reviews and discusses current analytical methodologies for the quantitative determination of 3-nitrotyrosine in their soluble and protein-associated forms, with the special focus being on free 3-nitrotyrosine. Special emphasis is given to analytical approaches based on the tandem mass spectrometry methodology. Pitfalls and solutions to overcome current methodological problems are emphasized and requirements for quantitative analytical approaches are recommended. The reliability of current analytical methods and the suitability of 3-nitrotyrosine as a biomarker of nitrative stress are thoroughly examined.  相似文献   
145.

Background

Socio-economic inequalities in mortality are observed at the country level in both North America and Europe. The purpose of this work is to investigate the contribution of specific risk factors to social inequalities in cause-specific mortality using a large multi-country cohort of Europeans.

Methods

A total of 3,456,689 person/years follow-up of the European Prospective Investigation into Cancer and Nutrition (EPIC) was analysed. Educational level of subjects coming from 9 European countries was recorded as proxy for socio-economic status (SES). Cox proportional hazard model''s with a step-wise inclusion of explanatory variables were used to explore the association between SES and mortality; a Relative Index of Inequality (RII) was calculated as measure of relative inequality.

Results

Total mortality among men with the highest education level is reduced by 43% compared to men with the lowest (HR 0.57, 95% C.I. 0.52–0.61); among women by 29% (HR 0.71, 95% C.I. 0.64–0.78). The risk reduction was attenuated by 7% in men and 3% in women by the introduction of smoking and to a lesser extent (2% in men and 3% in women) by introducing body mass index and additional explanatory variables (alcohol consumption, leisure physical activity, fruit and vegetable intake) (3% in men and 5% in women). Social inequalities were highly statistically significant for all causes of death examined in men. In women, social inequalities were less strong, but statistically significant for all causes of death except for cancer-related mortality and injuries.

Discussion

In this European study, substantial social inequalities in mortality among European men and women which cannot be fully explained away by accounting for known common risk factors for chronic diseases are reported.  相似文献   
146.
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection.One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8.We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9).The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (http://jaxmice.jax.org/research/immunology/005557-housing.html).  相似文献   
147.
The aim of this study was to investigate the changes induced by high tidal volume ventilation (HVTV) in pulmonary expression of micro-RNAs (miRNAs) and identify potential target genes and corresponding miRNA-gene networks. Using a real-time RT-PCR-based array in RNA samples from lungs of mice subjected to HVTV for 1 or 4 h and control mice, we identified 65 miRNAs whose expression changed more than twofold upon HVTV. An inflammatory and a TGF-β-signaling miRNA-gene network were identified by in silico pathway analysis being at highest statistical significance (P = 10(-43) and P = 10(-28), respectively). In the inflammatory network, IL-6 and SOCS-1, regulated by miRNAs let-7 and miR-155, respectively, appeared as central nodes. In TGF-β-signaling network, SMAD-4, regulated by miR-146, appeared as a central node. The contribution of miRNAs to the development of lung injury was evaluated in mice subjected to HVTV treated with a precursor or antagonist of miR-21, a miRNA highly upregulated by HVTV. Lung compliance was preserved only in mice treated with anti-miR-21 but not in mice treated with pre-miR-21 or negative-control miRNA. Both alveolar-arterial oxygen difference and protein levels in bronchoalveolar lavage were lower in mice treated with anti-miR-21 than in mice treated with pre-miR-21 or negative-control miRNA (D(A-a): 66 ± 27 vs. 131 ± 22, 144 ± 10 mmHg, respectively, P < 0.001; protein concentration: 1.1 ± 0.2 vs. 2.3 ± 1, 2.1 ± 0.4 mg/ml, respectively, P < 0.01). Our results show that HVTV induces changes in miRNA expression in mouse lungs. Modulation of miRNA expression can affect the development of HVTV-induced lung injury.  相似文献   
148.
PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on their dynamics. Studies aiming to characterize the dynamic and energetic determinants driving histone peptide recognition by epigenetic readers would strongly benefit from computational studies. Herein we focus on the dynamic and energetic characterization of the PHD finger subclass specialized in the recognition of histone H3 peptides unmodified in position K4 (H3K4me0). As a case study we focused on the first PHD finger of autoimmune regulator protein (AIRE-PHD1) in complex with H3K4me0. PCA analysis of the covariance matrix of free AIRE-PHD1 highlights the presence of a “flapping” movement, which is blocked in an open conformation upon binding to H3K4me0. Moreover, binding free energy calculations obtained through Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology are in good qualitative agreement with experiments and allow dissection of the energetic terms associated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes. MM/PBSA calculations have also been applied to the energetic analysis of other PHD fingers recognizing H3K4me0. In this case we observe excellent correlation between computed and experimental binding free energies. Overall calculations show that H3K4me0 recognition by PHD fingers relies on compensation of the electrostatic and polar solvation energy terms and is stabilized by non-polar interactions.  相似文献   
149.

Background

Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes.

Methods and Findings

Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children.

Conclusions

We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号