首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2021年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  1999年   1篇
排序方式: 共有23条查询结果,搜索用时 484 毫秒
11.
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1   总被引:1,自引:0,他引:1  
  相似文献   
12.

Background

Chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase in which phagocytes are defective in generating superoxide anion and downstream reactive oxidant intermediates (ROIs), is characterized by recurrent bacterial and fungal infections and by excessive inflammation (e.g., inflammatory bowel disease). The mechanisms by which NADPH oxidase regulates inflammation are not well understood.

Methodology/Principal Findings

We found that NADPH oxidase restrains inflammation by modulating redox-sensitive innate immune pathways. When challenged with either intratracheal zymosan or LPS, NADPH oxidase-deficient p47phox−/− mice and gp91phox-deficient mice developed exaggerated and progressive lung inflammation, augmented NF-κB activation, and elevated downstream pro-inflammatory cytokines (TNF-α, IL-17, and G-CSF) compared to wildtype mice. Replacement of functional NADPH oxidase in bone marrow-derived cells restored the normal lung inflammatory response. Studies in vivo and in isolated macrophages demonstrated that in the absence of functional NADPH oxidase, zymosan failed to activate Nrf2, a key redox-sensitive anti-inflammatory regulator. The triterpenoid, CDDO-Im, activated Nrf2 independently of NADPH oxidase and reduced zymosan-induced lung inflammation in CGD mice. Consistent with these findings, zymosan-treated peripheral blood mononuclear cells from X-linked CGD patients showed impaired Nrf2 activity and increased NF-κB activation.

Conclusions/Significance

These studies support a model in which NADPH oxidase-dependent, redox-mediated signaling is critical for termination of lung inflammation and suggest new potential therapeutic targets for CGD.  相似文献   
13.
NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47(phox-/-)) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)(-/-)×cathepsin G (CG)(-/-) mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47(phox-/-) mice, whereas NE(-/-)×CG(-/-) mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens.  相似文献   
14.
The hepatitis B virus capsid (core antigen) is able to bind to and activate naïve B cells and these become efficient primary antigen-presenting cells for the priming of T cells. We have investigated this interaction by using cryo-electron microscopy, three-dimensional image reconstruction, and molecular modeling to visualize capsids decorated with Fab fragments of a receptor immunoglobulin, and surface plasmon resonance to measure the binding affinity. By both criteria, the mode of binding differs from those of the six monoclonal anti-core antigen antibodies previously characterized. The Fab interacts with two sites ∼30 Å apart. One interaction is canonical, whereby the CDR loops engage the tip of one of the 25 Å spikes that protrude from the capsid surface. The second interaction is non-canonical; in it, the Fab framework contacts the tip of an adjacent spike. The binding affinity of this Fab for capsids, KD ∼ 4 × 10− 7 M, is relatively low for an antibody-antigen interaction, but is ∼ 150-fold lower still (∼ 2.5 × 10− 5 M) for unassembled capsid protein dimers. The latter observation indicates that both of the observed interactions are required to achieve stable binding of capsids by this receptor immunoglobulin. Considerations of conserved sequence motifs in other such molecules suggest that other naïve B cells may interact with HBV capsids in much the same way.  相似文献   
15.
16.
To investigate the range of antigenic variation of HBV capsids, we have characterized the epitopes for two anti-capsid antibodies by cryo-electron microscopy and image reconstruction of Fab-labeled capsids to approximately 10A resolution followed by molecular modeling. Both antibodies engage residues on the protruding spikes but their epitopes and binding orientations differ. Steric interference effects limit maximum binding to approximately 50% average occupancy in each case. However, the occupancies of the two copies of a given epitope that are present on a single spike differ, reflecting subtle distinctions in structure and hence, binding affinity, arising from quasi-equivalence. The epitope for mAb88 is conformational but continuous, consisting of a loop-helix motif (residues 77-87) on one of the two polypeptide chains in the spike. In contrast, the epitope for mAb842, like most conformational epitopes, is discontinuous, consisting of a loop on one polypeptide chain (residues 74-78) combined with a loop-helix element (residues 78-83) on the other. The epitope of mAb842 is essentially identical with that previously mapped for mAb F11A4, although the binding orientations of the two monoclonal antibodies (mAbs) differ, as do their affinities measured by surface plasmon resonance. From the number of monoclonals (six) whose binding had to be characterized to give the first duplicate epitope, we estimate the total number of core antigen (cAg) epitopes to be of the order of 20. Given that different antibodies may share the same epitope, the potential number of distinct anti-cAg clones should be considerably higher. The observation that the large majority of cAg epitopes are conformational reflects the relative dimensions of a Fab (large) and the small size and close packing of the motifs that are exposed and accessible on the capsid surface.  相似文献   
17.
Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination.  相似文献   
18.

The two species of yellow-nosed albatross, Atlantic (Thalassarche chlororhynchos) and Indian (T. carteri), are morphologically similar, but they differ in breeding behaviour and distribution. Both species are listed as endangered by the IUCN due to the limited number of breeding sites, threats from introduced predators and diseases, and impact of commercial fishing. We quantified genetic variation between and within the two species. Using nuclear (microsatellites and two nuclear sequences) and mitochondrial (control region) markers, we analysed 354 samples from four breeding islands (Atlantic: Nightingale, Inaccessible, and Gough; Indian: Amsterdam) and bycatch samples from South Africa and New Zealand. In addition to all markers separating the two species, nuclear markers showed Atlantic yellow-nosed albatrosses from Gough Island are genetically distinct from those breeding at Nightingale and Inaccessible Islands in the Tristan da Cunha archipelago. Nuclear markers confirmed that all bycatch samples were Indian yellow-nosed albatrosses, however, the bycatch birds from South Africa and New Zealand were distinct from each other and from birds breeding on Amsterdam Island, suggesting colony specific dispersal at sea. Our study supports the current recognition of two yellow-nosed albatross species and recognises genetically distinct groups of both Atlantic and Indian yellow-nosed albatross breeding on different islands, which is important for their conservation and management.

  相似文献   
19.
IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.  相似文献   
20.
The breast cancer resistance protein (BCRP) is abundant in the placenta and protects the fetus by limiting placental drug penetration. We hypothesize that pregnancy-specific hormones regulate BCRP expression. Hence, we examined the effects of progesterone (P4) and 17beta-estradiol (E2) on BCRP expression in the human placental BeWo cells. P4 and E2 significantly increased and decreased BCRP protein and mRNA, respectively. Likewise, treatment with P4 and E2 increased and decreased, respectively, fumitremorgin C-inhibitable mitoxantrone efflux activity of BeWo cells. Reduction in BCRP expression by E2 was abrogated by the estrogen receptor (ER) antagonist ICI-182,780. However, the progesterone receptor (PR) antagonist RU-486 had no effect on P4-mediated induction of BCRP. P4 together with E2 further increased BCRP protein and mRNA compared with P4 treatment alone. This combined effect on BCRP expression was abolished by RU-486, ICI-182,780, or both. Further analysis revealed that E2 significantly decreased ER beta mRNA and strongly induced PR(B) mRNA in a dose-dependent manner but had no effect on PR(A) and ER alpha. P4 alone had no significant effect on mRNA of ER alpha, ER beta, PR(A), and PR(B). E2 in combination with P4 increased PR(B) mRNA, but the level of induction was significantly reduced compared with E2 treatment alone. Taken together, these results indicate that E2 by itself likely downregulates BCRP expression through an ER, possibly ER beta. P4 alone upregulates BCRP expression via a mechanism other than PR. P4 in combination with E2 further increases BCRP expression, presumably via a nonclassical PR- and/or E2-mediated synthesis of PR(B).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号