首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2272篇
  免费   132篇
  2023年   21篇
  2022年   40篇
  2021年   81篇
  2020年   68篇
  2019年   63篇
  2018年   78篇
  2017年   72篇
  2016年   112篇
  2015年   131篇
  2014年   156篇
  2013年   163篇
  2012年   207篇
  2011年   182篇
  2010年   87篇
  2009年   78篇
  2008年   123篇
  2007年   109篇
  2006年   92篇
  2005年   77篇
  2004年   58篇
  2003年   63篇
  2002年   50篇
  2001年   54篇
  2000年   27篇
  1999年   27篇
  1998年   12篇
  1997年   19篇
  1996年   6篇
  1995年   3篇
  1993年   3篇
  1992年   18篇
  1991年   7篇
  1990年   9篇
  1989年   11篇
  1988年   11篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1970年   5篇
  1967年   3篇
  1965年   2篇
  1962年   2篇
排序方式: 共有2404条查询结果,搜索用时 15 毫秒
101.
Intensive land use of the Brazilian Atlantic Forest accelerated with the rise of sugar cane plantations in the northeastern part of Brazil. Consequently, many ecosystems were destroyed, including riparian forests. The number of studies of riparian restoration has increased but comparative studies on the belowground effects of common reforestation strategies are rare. Here, we compared soil microbial properties among four different land use types: native rainforest, sugar cane plantation, single species reforestation, and mixed species reforestation, each replicated at two spatially independent sites. Soil samples were taken in 2013 and 2014, that is 2 and 3 years after reforestation, respectively. In both years, land use types had a significant effect on basal respiration, microbial biomass, and specific respiration (whereas specific respiration was marginally affected in 2014). In 2013, basal respiration in sugar cane plantations was significantly lower (?65%) when compared to native forests. In 2014, basal respiration (+60%) and soil microbial biomass (+90%) were significantly higher in mixed species reforestation compared to sugar cane, whereas single species reforestation had comparable values as in sugar cane plantations. Our results indicate that soil microbial biomass and activity respond rapidly to land use change when mixed species reforestation is used. Thus, using mixed species reforestation may enhance the provisioning of ecosystem services already in the short term.  相似文献   
102.
Understanding speciation and biodiversity patterns in plants requires knowledge of the general role of climate in allowing polyploids to escape competition and persist with their diploid progenitors. This is a particularly interesting issue in widespread species that present multiple ploidy levels and occur across a heterogeneous environment. Chrysolaena (Vernonieae, Asteraceae) is a cytogenetically very diverse genus, with significant interspecific and intraspecific ploidy level variation and with continuous distribution across South America. No previous studies have summarized chromosome count data of Chrysolaena or addressed the cytogeography of the genus. Ploidy level of Chrysolaena species was determined by chromosome counting during mitosis and/or meiosis; the geographic distribution of cytotypes was examined and the correlations between the distribution of particular cytotypes and current ecological conditions were evaluated. A total of 43 new chromosome counts and five ploidy levels (2x, 4x, 6x, 7x, 8x) were reported. The chromosome number of C. cordifolia (2n = 7x = 70) and a new cytotype for C. propinqua var. canescens (2n = 4x = 40) are reported for the first time. Three geographic areas with high diversity of cytotypes and species were detected. The results obtained do not suggest a clear distribution pattern that depends on climatic factors for Chrysolaena populations. However, a geographic pattern was identified in the distribution of ploidy levels, with diploid species presenting a more restricted distribution than polyploid species.  相似文献   
103.
Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad-spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP-P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP-P demonstrated a maximum absorbance at 412 nm in ultraviolet-visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X-ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP-P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.  相似文献   
104.
A new 5-deoxyflavone glycoside, identified as 7-O-(alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl)-3',4',7-trihydroxyflavone (1), was isolated from the aerial parts of Calea clausseniana. Its structure was determined by spectral analysis.  相似文献   
105.
Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the world's largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This 'landscape-divergence hypothesis', if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems.  相似文献   
106.
107.
108.
109.
Aleurocanthus woglumi (Ashby, 1915) is an important agricultural pest that causes yield losses of 20–80% in citrus plants by removing plant nutrients while feeding and allowing the formation of sooty mold. The objective of this study was to evaluate physiological changes in citrus plants in response to A. woglumi infestation under field conditions. The experiment was conducted in a citrus orchard in Paço do Lumiar, Maranhão, Brazil. Thirty-two citrus plants were used, including eight of each of the following varieties: Tahiti lime, Tanjaroa tangerine, Nissey tangerine, and Ponkan tangerine. Four random plants with A. woglumi infestation and four plants free from this pest were selected from each variety. The physiological parameters evaluated were photochemical efficiency and gas exchange. Regarding photochemical efficiency, infested plants presented photoinhibition damage, with a performance index of 4.22. The gas exchange parameters of infested plants changed, with reductions in photosynthetic CO2 assimilation of 69.7% (Tahiti), 64% (Tanjaroa), 68.8% (Nissey) and 63.3% (Ponkan). Plants infested with A. woglumi also presented physiological changes; their photosynthetic CO2 assimilation, stomatal conductance, instantaneous transpiration, and performance indexes were affected. The infested citrus plants showed photoinhibition of photosystem II. The photosynthetic CO2 assimilation decreased approximately 70% in Tahiti lime, Tanjaroa tangerine, Nissey tangerine, and Ponkan tangerine plants infested with A. woglumi.  相似文献   
110.
Forest species can have their seeds damaged by granivorous insects, especially by those in their larval stage. In this context, this study aims to report the occurrence of Amblycerus species in Cordia trichotoma seeds, to describe their main damage to seeds and effects on germination, as well as their associated hymenopteran parasitoids. Therefore, seven trees were selected in the municipality of Taquaruçu do Sul, RS, Brazil. Fruits were collected weekly from the medium third of the tree crown, from the beginning of their formation until total dehiscence. To examine the damage caused by granivorous insects within the fruits, 15 fruits from each tree were sectioned with a scalpel. Furthermore, 10 fruits from each tree were stored individually in clear plates to verify the occurrence and identification of granivorous insect species. Evidence of the damage caused to seeds was verified through the germination test by comparing preserved and damaged seeds, with four repetitions of 25 seeds each. The species Amblycerus longesuturalis and Amblycerus profaupar (Chrysomelidae: Bruchinae) were found associated with fruits of C. trichotoma. Female insects predominantly laid eggs on the superior part between the marcescent calyx and the fruit, and larvae perforated the fruit tegument to start consuming seed embryos and reserves. Bruquine larvae are parasitized by Hymenoptera of Bracon, Mirax, Omeganastatus and Triapsis genera. In conclusion, the germination of C. trichotoma seeds is significantly affected by emergence orifices caused by granivorous species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号