首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3580篇
  免费   285篇
  国内免费   2篇
  2023年   8篇
  2022年   13篇
  2021年   61篇
  2020年   29篇
  2019年   33篇
  2018年   42篇
  2017年   49篇
  2016年   97篇
  2015年   137篇
  2014年   180篇
  2013年   236篇
  2012年   324篇
  2011年   259篇
  2010年   221篇
  2009年   145篇
  2008年   231篇
  2007年   244篇
  2006年   206篇
  2005年   202篇
  2004年   203篇
  2003年   148篇
  2002年   166篇
  2001年   41篇
  2000年   30篇
  1999年   52篇
  1998年   53篇
  1997年   30篇
  1996年   37篇
  1995年   24篇
  1994年   36篇
  1993年   22篇
  1992年   25篇
  1991年   25篇
  1990年   19篇
  1989年   23篇
  1988年   23篇
  1987年   14篇
  1986年   19篇
  1985年   9篇
  1984年   15篇
  1983年   10篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   9篇
  1978年   10篇
  1977年   8篇
  1975年   8篇
  1973年   14篇
  1970年   7篇
排序方式: 共有3867条查询结果,搜索用时 15 毫秒
111.
Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine in vivo the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS) early life stress or early handling (EH), underwent amygdala kindling (or sham kindling). Once fully kindled, in vivo juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05). In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.  相似文献   
112.

Background

Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient.

Methodology/Principal Findings

A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda) are used as medicinal plants.

Conclusions/Significance

Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.  相似文献   
113.
The regular decrease of female fertility over time is a major concern in modern dairy cattle industry. Only half of this decrease is explained by indirect response to selection on milk production, suggesting the existence of other factors such as embryonic lethal genetic defects. Genomic regions harboring recessive deleterious mutations were detected in three dairy cattle breeds by identifying frequent haplotypes (>1%) showing a deficit in homozygotes among Illumina Bovine 50k Beadchip haplotyping data from the French genomic selection database (47,878 Holstein, 16,833 Montbéliarde, and 11,466 Normande animals). Thirty-four candidate haplotypes (p<10−4) including previously reported regions associated with Brachyspina, CVM, HH1, and HH3 in Holstein breed were identified. Haplotype length varied from 1 to 4.8 Mb and frequencies from 1.7 up to 9%. A significant negative effect on calving rate, consistent in heifers and in lactating cows, was observed for 9 of these haplotypes in matings between carrier bulls and daughters of carrier sires, confirming their association with embryonic lethal mutations. Eight regions were further investigated using whole genome sequencing data from heterozygous bull carriers and control animals (45 animals in total). Six strong candidate causative mutations including polymorphisms previously reported in FANCI (Brachyspina), SLC35A3 (CVM), APAF1 (HH1) and three novel mutations with very damaging effect on the protein structure, according to SIFT and Polyphen-2, were detected in GART, SHBG and SLC37A2 genes. In conclusion, this study reveals a yet hidden consequence of the important inbreeding rate observed in intensively selected and specialized cattle breeds. Counter-selection of these mutations and management of matings will have positive consequences on female fertility in dairy cattle.  相似文献   
114.
Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+-vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.  相似文献   
115.
Modeling energy and charge transfer in DNA has been a challenging issue because of many conformations DNA can take. Due to its simplicity, we propose a discrete variational approach to study the charge transfer mechanism in DNA based on the Holstein-Su-Schrieffer-Heeger model. It is shown that bright solitary waves may propagate through the DNA and the variational approximation provides explicit relations between experimental parameters and important characteristics of the waves such as amplitude, width, chirp and homogenous phase, and energy. Our analytical predictions are confirmed by intensive numerical simulations with a good accuracy.  相似文献   
116.
Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.  相似文献   
117.
Hospital tap water is a recognised source of Pseudomonas aeruginosa. UK guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap ‘assemblies’. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.  相似文献   
118.
Cell capacity for cytosolic NADPH regeneration by NADP‐dehydrogenases was investigated in the leaves of two hybrid poplar (Populus deltoides × Populus nigra) genotypes in response to ozone (O3) treatment (120 ppb for 17 days). Two genotypes with differential O3 sensitivity were selected, based on visual symptoms and fallen leaves: Robusta (sensitive) and Carpaccio (tolerant). The estimated O3 flux (POD0), that entered the leaves, was similar for the two genotypes throughout the treatment. In response to that foliar O3 flux, CO2 assimilation was inhibited to the same extent for the two genotypes, which could be explained by a decrease in Rubisco (EC 4.1.1.39) activity. Conversely, an increase in PEPC (EC 4.1.1.31) activity was observed, together with the activation of certain cytosolic NADP‐dehydrogenases above their constitutive level, i.e. NADP‐G6PDH (EC 1.1.1.49), NADP‐ME (malic enzyme) (EC 1.1.1.40) and NADP‐ICDH (NADP‐isocitrate dehydrogenase) (EC1.1.1.42). However, the activity of non‐phosphorylating NADP‐GAPDH (EC 1.2.1.9) remained unchanged. From the 11th fumigation day, NADP‐G6PDH and NADP‐ME profiles made it possible to differentiate between the two genotypes, with a higher activity in Carpaccio than in Robusta. At the same time, Carpaccio was able to maintain high levels of NADPH in the cells, while NADPH levels decreased in Robusta O3‐treated leaves. All these results support the hypothesis that the capacity for cells to regenerate the reducing power, especially the cytosolic NADPH pool, contributes to improve tolerance to high ozone exposure.  相似文献   
119.
Feline leukemia virus (FeLV) is a naturally transmitted gammaretrovirus that infects domestic cats. FeLV-945, the predominant isolate associated with non-T-cell disease in a natural cohort, is a member of FeLV subgroup A but differs in sequence from the FeLV-A prototype, FeLV-A/61E, in the surface glycoprotein (SU) and long terminal repeat (LTR). Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in pathogenesis indistinguishable from that of FeLV-A/61E, namely, thymic lymphoma of T-cell origin. In contrast, substitution of both FeLV-945 LTR and SU into FeLV-A/61E resulted in multicentric lymphoma of non-T-cell origin. These results implicated the FeLV-945 SU as a determinant of pathogenic spectrum. The present study was undertaken to test the hypothesis that FeLV-945 SU can act in the absence of other unique sequence elements of FeLV-945 to determine the disease spectrum. Substitution of FeLV-A/61E SU with that of FeLV-945 altered the clinical presentation and resulted in tumors that demonstrated expression of CD45R in the presence or absence of CD3. Despite the evident expression of CD45R, a typical B-cell marker, T-cell receptor beta (TCRβ) gene rearrangement indicated a T-cell origin. Tumor cells were detectable in bone marrow and blood at earlier times during the disease process, and the predominant SU genes from proviruses integrated in tumor DNA carried markers of genetic recombination. The findings demonstrate that FeLV-945 SU alters pathogenesis, although incompletely, in the absence of FeLV-945 LTR. Evidence demonstrates that FeLV-945 SU and LTR are required together to fully recapitulate the distinctive non-T-cell disease outcome seen in the natural cohort.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号