首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   117篇
  2023年   7篇
  2022年   2篇
  2021年   27篇
  2020年   20篇
  2019年   23篇
  2018年   23篇
  2017年   21篇
  2016年   37篇
  2015年   80篇
  2014年   87篇
  2013年   97篇
  2012年   150篇
  2011年   119篇
  2010年   112篇
  2009年   82篇
  2008年   84篇
  2007年   93篇
  2006年   90篇
  2005年   70篇
  2004年   72篇
  2003年   57篇
  2002年   60篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1457条查询结果,搜索用时 31 毫秒
941.
942.
943.
944.
The galectin family of β-galactoside binding lectins isinvolved in normal and pathological processes. Altered expressionof galectin-3 has been described in many cancers, and studiesof cancer cell lines have implicated this lectin in variousaspects of the tumorigenic cascade. The goal of this reportwas to directly assess the importance of galectin-3 in tumorbiology by introducing the galectin-3 null mutation (galectin-3–/–)into mouse lines genetically programmed to develop cancers.We used two mouse models of human intestinal cancer, the ApcMinand Apc1638N lines, to study tumor initiation and tumor progression.We also crossed the galectin-3–/– mice with PyMTtransgenic animals, a model in which primary mammary gland tumorsgive rise to lung metastases at high frequency. Unexpectedly,we show that the absence of galectin-3 does not affect the evolutionof the disease in any of these three situations.  相似文献   
945.
946.
Climatic history and ecology are considered the most important factors moulding the spatial pattern of genetic diversity. With the advent of molecular markers, species' historical fates have been widely explored. However, it has remained speculative what role ecological factors have played in shaping spatial genetic structures within species. With an unprecedented, dense large-scale sampling and genome-screening, we tested how ecological factors have influenced the spatial genetic structures in Alpine plants. Here, we show that species growing on similar substrate types, largely determined by the nature of bedrock, displayed highly congruent spatial genetic structures. As the heterogeneous and disjunctive distribution of bedrock types in the Alps, decisive for refugial survival during the ice ages, is temporally stable, concerted post-glacial migration routes emerged. Our multispecies study demonstrates the relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios.  相似文献   
947.
948.
Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners.Promyelocytic leukemia protein (PML)5 is a tumor suppressor (1) whose gene is translocated in cases of acute promyelocytic leukemia (2). PML functions as the organizer of PML NBs, which are dynamic structures harboring numerous transiently and permanently localized proteins (3). The importance of PML NB structural integrity was first revealed in acute promyelocytic leukemia because, in this malignancy, the abnormal fusion protein PML/RARα leads to NB disruption. Patient treatment with As2O3 induces the reversion of the acute promyelocytic leukemia phenotype as well as PML/RARα degradation and PML NB reformation (4).PML is a target for the post-translational modification by SUMO, an ubiquitin-like protein that is covalently coupled to PML lysine residues 65, 160, and 490 via a process called sumoylation (5, 6). Among the four human SUMO paralogs identified, SUMO1, -2, and -3 were found to be conjugated to target proteins. It involves an enzymatic cascade for the transfer of the mature SUMO and the formation of an isopeptide bond between the COOH-terminal glycine of SUMO and a lysine from the target protein. Sumoylation is a reversible process due to the existence of several deconjugating enzymes.PML NB formation requires both the covalent linkage (sumoylation) (reviewed in Ref. 7) and the non-covalent interactions of SUMO with PML through a SUMO binding domain (SBD also named SIM for SUMO interacting motif) (8). Interestingly, PML SBD contains specific serines, acting as substrates for the caseine kinase-2 (CK2), which are implicated in PML ubiquitination and degradation (9) and which phosphorylation status could regulate the function of the SBD.Because sumoylation of proteins is dynamic and reversible, this post-translational modification is difficult to follow in vivo and its detection mainly relies on the identification of sumoylated protein species by Western blot following cell lysis. Recently, we used bioluminescence resonance energy transfer (BRET) to detect covalent linkage of ubiquitin (ubiquitination) in living mammalian cells and in real time (10). In brief, BRET monitors the interaction between a protein fused to a luciferase and a protein fused to yellow or green fluorescent protein (YFP or GFP), upon addition of a luciferase substrate; it is a proximity-based assay that requires that the donor of energy (luciferase fusion) and the acceptor (YFP or GFP fusions) are within 50 to 100 Å for an efficient energy transfer (1113). However, a demonstration that BRET may provide a method of choice to follow the dynamics of protein sumoylation in living cells is lacking. Here, we developed a sensitive and quantitative SUMO BRET assay for the detection of PML interactions with SUMO in living cells. We proved that BRET can be used to detect both SUMO covalent and non-covalent interactions with PML (model, Fig. 1H). For this purpose, we used the PMLIII isoform in which sumoylation is induced by As2O3 and triggers a proteasome-dependent PML degradation (14); the degradation process involves the ubiquitination of poly-SUMO covalently coupled to PML by the poly-SUMO-specific E3 ubiquitin ligase RNF4 (1517). Altogether, our BRET results indicate that, As2O3 and/or RNF4-induced PML degradation are dependent on the integrity of both PML sumoylation target sites and the PML SBD core sequence but not on the CK2 serine phosphorylation sites within the SBD. However, phosphorylation of these serines is required for most PML SBD-dependent non-covalent interactions. This phospho-regulation of PML SBD (“SBD phospho-switch”) establishes another link between the phosphorylation and SUMO, different from the phospho-sumoyl switch (18).Open in a separate windowFIGURE 1.BRET reveals both covalent and non-covalent PML/SUMO1 interactions as well as As2O3-induced PML sumoylation in living cells. A and B, detection of PML/SUMO1 interactions by BRET1 (A) or BRET2 (B) titration assays using HEK293T cells transfected for expression of increasing amounts of YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2) and a fixed amount of Luc fusion. Negative controls: BRET pairs including PMLC57,60A-Luc (a non-sumoylatable mutant with Cys57 and Cys60 mutated to Ala) or YFP-SUMO1G (a SUMO1 that cannot be processed) (dotted line) (A) and Luc fused to a NLS (B). C and D, detection of covalent and non-covalent PML/SUMO1 interactions by BRET1 (C) or BRET2 (D) titration assays in the presence (dotted lines, empty symbols) or absence (solid lines and symbols) of As2O3 in HEK293T cells transfected for expression of PMLWT-Luc or its sumoylation deficient mutant PML3K-Luc in pairs with either YFP-SUMO1 (BRET1) or GFP-SUMO1 (BRET2). Negative control: PMLWT-Luc in pairs with YFP-SUMO1G. E, kinetics of As2O3-induced PMLWT-Luc sumoylation revealed by BRET1 (assay on attached cells) and BRET2 (cells in suspension). F, dose-response curve to As2O3 treatment for PMLWT-Luc or PML3KR-Luc/YFP-SUMO1 BRET1 pairs. Negative control: PMLC57,60A-Luc/YFP-SUMO1. G, comparison of As2O3-induced sumoylation of PMLWT, PML3KR, and its single lysine mutants at an identical YFP acceptor/Luc donor expression ratio as derived from titration curves. As2O3 treatment (C–G): 5 μm, 4 h exposure for BRET1 and Western blot or 10 μm, 70-min exposure for BRET2. H, model for the covalent (sumoylation) and non-covalent interactions between a tested protein fused to Luc and SUMO fused to a fluorescent protein (YFP) that generates a BRET signal. The black arrows indicate the bioluminescent transfer of energy (or BRET) that occurs between Luc and GFP fusion upon exposure to the cell-permeable luciferase substrate.  相似文献   
949.
950.
Zipfel C  Kunze G  Chinchilla D  Caniard A  Jones JD  Boller T  Felix G 《Cell》2006,125(4):749-760
Higher eukaryotes sense microbes through the perception of pathogen-associated molecular patterns (PAMPs). Arabidopsis plants detect a variety of PAMPs including conserved domains of bacterial flagellin and of bacterial EF-Tu. Here, we show that flagellin and EF-Tu activate a common set of signaling events and defense responses but without clear synergistic effects. Treatment with either PAMP results in increased binding sites for both PAMPs. We used this finding in a targeted reverse-genetic approach to identify a receptor kinase essential for EF-Tu perception, which we called EFR. Nicotiana benthamiana, a plant unable to perceive EF-Tu, acquires EF-Tu binding sites and responsiveness upon transient expression of EFR. Arabidopsis efr mutants show enhanced susceptibility to the bacterium Agrobacterium tumefaciens, as revealed by a higher efficiency of T-DNA transformation. These results demonstrate that EFR is the EF-Tu receptor and that plant defense responses induced by PAMPs such as EF-Tu reduce transformation by Agrobacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号