首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  国内免费   2篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   12篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
21.
Although many studies have been done to uncover the mechanisms by which down‐regulation of Notch‐1 exerts its anti‐tumor activity against a variety of human malignancies, the precise molecular mechanisms remain unclear. In the present study, we investigated the cellular consequence of Notch‐1 down‐regulation and also assessed the molecular consequence of Notch‐1‐mediated alterations of its downstream targets on cell viability and apoptosis in prostate cancer (PCa) cells. We found that the down‐regulation of Notch‐1 led to the inhibition of cell growth and induction of apoptosis, which was mechanistically linked with down‐regulation of Akt and FoxM1, suggesting for the first time that Akt and FoxM1 are downstream targets of Notch‐1 signaling. Moreover, we found that a “natural agent” (genistein) originally discovered from soybean could cause significant reduction in cell viability and induced apoptosis of PCa cells, which was consistent with down‐regulation of Notch‐1, Akt, and FoxM1. These results suggest that down‐regulation of Notch‐1 by novel agents could become a newer approach for the prevention of tumor progression and/or treatment, which is likely to be mediated via inactivation of Akt and FoxM1 signaling pathways in PCa. J. Cell. Biochem. 112: 78–88, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
22.
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.  相似文献   
23.
24.
B Bao  A Ahmad  D Kong  S Ali  AS Azmi  Y Li  S Banerjee  S Padhye  FH Sarkar 《PloS one》2012,7(8):e43726
Tumor hypoxia with deregulated expression of hypoxia inducing factor (HIF) and its biological consequence leads to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. Emerging evidence also suggest that hypoxia and HIF signaling pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cell (CSC) functions, and also maintains the vicious cycle of inflammation, all of which contribute to radiation therapy and chemotherapy resistance. However, the detailed mechanisms by which hypoxia/HIF drive these events are not fully understood. Here, we have shown that hypoxia leads to increased expression of VEGF, IL-6, and CSC marker genes such as Nanog, Oct4 and EZH2, and also increased the expression of miR-21, an oncogenic miRNA, in prostate cancer (PCa) cells (PC-3 and LNCaP). The treatment of PCa cells with CDF, a novel Curcumin-derived synthetic analogue previously showed anti-tumor activity in vivo, inhibited the productions of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 under hypoxic condition. Moreover, CDF treatment of PCa cells led to decreased cell migration under hypoxic condition. Taken together, these results suggest that the anti-tumor effect of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become useful for cancer therapy.  相似文献   
25.
Synergistic effects of multiple natural products in pancreatic cancer cells   总被引:1,自引:0,他引:1  
Pancreatic cancer (PC) remains the fourth most common cause of cancer related death in the United States. Therefore, novel strategies for the prevention and treatment are urgently needed. Numerous dietary and pharmacological agents have been proposed as alternative strategies for the prevention and/or treatment of PC. Isoflavone is a prominent flavonoid found in soy products and has been proposed to be responsible for lowering the incidence of PC in Asians. Similarly, curcumin, an active ingredient of turmeric, that inhibits growth of malignant neoplasms, has a promising role in the prevention and/or treatment of PC. Here we examined whether isoflavone together with curcumin could elicit a greater inhibition of growth of PC cells than either agent alone, and also sought to determine the molecular mechanism of action. We found that the inhibition of cell growth and induction of apoptosis was significantly greater in the combination group than that could be achieved by either agent alone. These changes were associated with decreased Notch-1 expression and DNA binding activity of NF-kappaB and its target genes such as Cyclin D1, Bcl-2, and Bcl-xL. Moreover, we found that the combination of four natural agents at lower concentration was much more effective. Collectively, our results suggest that diet containing multiple natural products should be preferable over single agents for the prevention and/or treatment of PC. The superior effects of the combinatorial treatment could partly be attributed to the inhibition of constitutive activation of Notch-1 and NF-kappaB signaling pathways.  相似文献   
26.
Graphene-based laminate membranes with selective ion-transport capability show great potential in renewable osmotic energy harvesting. One of the great challenges is to reduce the overall energy barriers while remain the high ion selectivity in the transmembrane ion transport process. Here, a strategy is proposed to break the trade-off between ion selectivity and permeability in laminar nanochannels using amphiphilic molecules as modifier, which enhances the surface charge density of nanochannel by loading more ion polymer with polar head and lows the frictional force of ion transport with hydrophobic tail. The conversion efficiency can reach to 32% in osmotic energy harvesting (0.5 m /0.01 m concentration gradient) after adopting this modifier. During the process of mixing real river water and seawater, the maximum power density can reach to 13.38 W m−2. The amphiphilic molecules also bind adjacent nanosheets, endowing the membrane's strong mechanical strength and high stability in aqueous solution. This work can open up a new way to regulate the transmembrane ion transport in 2D laminate membranes.  相似文献   
27.
Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d -galactose ( d -gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d -gal was introduced to induce cell senescence, which was verified via β-galactosidase staining. The effects of d -gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d -gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d -gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d -gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.  相似文献   
28.
3,3′‐Diindolylmethane (DIM) is a known anti‐tumor agent against breast and other cancers; however, its exact mechanism of action remains unclear. The urokinase plasminogen activator (uPA) and its receptor (uPAR) system are involved in the degradation of basement membrane and extracellular matrix, leading to tumor cell invasion and metastasis. Since uPA‐uPAR system is highly activated in aggressive breast cancer, we hypothesized that the biological activity of B‐DIM could be mediated via inactivation of uPA‐uPAR system. We found that B‐DIM treatment as well as silencing of uPA‐uPAR led to the inhibition of cell growth and motility of MDA‐MB‐231 cells, which was in part due to inhibition of VEGF and MMP‐9. Moreover, silencing of uPA‐uPAR led to decreased sensitivity of these cells to B‐DIM indicating an important role of uPA‐uPAR in B‐DIM‐mediated inhibition of cell growth and migration. We also found similar effects of B‐DIM on MCF‐7, cells expressing low levels of uPA‐uPAR, which was due to direct down‐regulation of MMP‐9 and VEGF, independent of uPA‐uPAR system. Interestingly, over‐expression of uPA‐uPAR in MCF‐7 cells attenuated the inhibitory effects of B‐DIM. Our results, therefore, suggest that B‐DIM down‐regulates uPA‐uPAR in aggressive breast cancers but in the absence of uPA‐uPAR, B‐DIM can directly inhibit VEGF and MMP‐9 leading to the inhibition of cell growth and migration of breast cancer cells. J. Cell. Biochem. 108: 916–925, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
29.
朊病毒是一种由体内正常朊蛋白转化形成的传染性蛋白质,朊病毒病是由朊病毒引发的致命性神经退行性疾病。目前临床虽然尚无治疗朊病毒病的方法,但是大量的研究者已从多个角度进行研究,并取得了一定进展。对近期有关传统化学药物、基因治疗方法、免疫学治疗方法和同源朊蛋白的朊病毒病治疗方法进行了综述,并重点分析了新型靶向细胞内信号通路药物以及有潜在利用价值的线粒体相关朊病毒胞内作用信号通路,旨在为朊病毒新的研究方向提供理论依据,从而促进朊病毒病治疗方法应用于临床。  相似文献   
30.
The involvement and potential interdependence of inositol trisphosphate (IP3) receptors and Bcl-2 in the regulation of Ca2+ signaling is not clear. Here, we have explored the mechanism(s) of how Bcl-2 suppresses the IP3-sensitive Ca2+ release in MCF-7 cells focusing on the possible role of protein phosphatase 1 (PP1). We found that through influences on protein–protein interaction, Bcl-2 may alter the balance between the effects of phosphatase (PP1) and kinase (PKA) on the IP3 R1 signaling complex. Using various experimental approaches including phosphatase inhibition and RNAi, we show that Bcl-2 by competing with IP3R1 for the binding of PP1 can reduce the IP3-mediated calcium signal and protect cells from mitochondrial dysfunction and cell death. Liping Xu, Dejuan Kong - Equal contribution by these authors  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号