首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   53篇
  2024年   3篇
  2023年   3篇
  2022年   4篇
  2021年   11篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   18篇
  2015年   48篇
  2014年   38篇
  2013年   43篇
  2012年   63篇
  2011年   54篇
  2010年   40篇
  2009年   43篇
  2008年   64篇
  2007年   58篇
  2006年   44篇
  2005年   40篇
  2004年   40篇
  2003年   42篇
  2002年   31篇
  2001年   14篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有806条查询结果,搜索用时 15 毫秒
21.
With age, somatically derived mitochondrial DNA (mtDNA) deletion mutations arise in many tissues and species. In skeletal muscle, deletion mutations clonally accumulate along the length of individual fibers. At high intrafiber abundances, these mutations disrupt individual cell respiration and are linked to the activation of apoptosis, intrafiber atrophy, breakage, and necrosis, contributing to fiber loss. This sequence of molecular and cellular events suggests a putative mechanism for the permanent loss of muscle fibers with age. To test whether mtDNA deletion mutation accumulation is a significant contributor to the fiber loss observed in aging muscle, we pharmacologically induced deletion mutation accumulation. We observed a 1200% increase in mtDNA deletion mutation‐containing electron transport chain‐deficient muscle fibers, an 18% decrease in muscle fiber number and 22% worsening of muscle mass loss. These data affirm the hypothesized role for mtDNA deletion mutation in the etiology of muscle fiber loss at old age.  相似文献   
22.
Currently, the impact of introduced predators on small mammal population decline is a focal research direction in the Australian desert literature. In all likelihood though, single‐factor explanation of population dynamics is inadequate, leaving gaps in our knowledge of the multitude of potential influences on small mammal abundance and occupancy patterns in time and space. Here, we investigated floristic gradients across four potential refuge sites of the central rock‐rat, Zyzomys pedunculatus, a granivore rodent (50–120 g) that is endemic to central Australia and is categorised as critically endangered. The study took place in Tjoritja/West MacDonnell National Park in the MacDonnell Ranges bioregion. Floristic sampling was allocated across the four sites, the locations of which were predetermined by an established monitoring and management programme for the central rock‐rat. Our aim was to examine the relationship between environmental gradients and floristic composition across the four sites, and thereby test the extent to which the patterns of food type and food availability can inform central rock‐rat spatio‐temporal dynamics. We found high site‐scale floristic patterning that related foremost to elevation and then to antecedent rainfall and time‐since‐fire and fire‐severity effects. To interpret these results, we applied the principles of refuge theory and we described a gradient from core refuge habitat to intermittent and then marginal habitat within the current central rock‐rat stronghold area. Overall, our results implied a strong floristic basis to central rock‐rat site occurrence, and they thus compel us to take explicit account of spatial (elevation) and temporal (rainfall–productivity and fire‐disturbance) influences on the food axis of potential refuge sites of this critically endangered species.  相似文献   
23.
24.
25.
26.
Claudin-5 is a protein component of many endothelial tight junctions, including those at the blood-brain barrier, a barrier that limits molecular exchanges between the central nervous system and the circulatory system. To test the contribution of claudin-5 to this barrier function of tight junctions, we expressed murine claudin-5 in Madin-Darby canine kidney II cells. The result was a fivefold increase in transepithelial resistance in claudin-5 transductants and a reduction in conductance of monovalent cations. However, the paracellular flux of neither neutral nor charged monosaccharides was significantly changed in claudin-5 transductants compared to controls. Therefore, expression of claudin-5 selectively decreased the permeability to ions. Additionally, site-directed mutations of particular amino acid residues in the first extracellular domain of claudin-5 altered the properties of the tight junctions formed in response to claudin-5 expression. In particular, the conserved cysteines were crucial: mutation of either cysteine abolishted the ability of claudin-5 to increase transepithelial resistance, and mutation of Cys(64) strikingly increased the paracellular flux of monosaccharides. These new insights into the functions of claudin-5 at the molecular level in tight junctions may account for some aspects of the blood-brain barrier's selective permeability.  相似文献   
27.
The effects of Mo-hydroxylamido complexes on cell growth were determined in Saccharomyces cerevisiae to investigate the biological effects of four different Mo complexes as a function of pH. Studies with yeast, an eukaryotic cell, are particularly suited to examine growth at different pH values because this organism grows well from pH 3 to 6.5. Studies can therefore be performed both in the presence of intact complexes and when the complexes have hydrolyzed to ligand and free metal ion. One of the complexes we examined was structurally characterized by X-ray crystallography. Yeast growth was inhibited in media solutions containing added Mo-dialkylhydroxylamido complexes at pH 3-7. When combining the yeast growth studies with a systematic study of the Mo-hydroxylamido complexes' stability as a function of pH and an examination of their speciation in yeast media, the effects of intact complexes can be distinguished from that of ligand and metal. This is possible because different effects are observed with complex present than when ligand or metal alone is present. At pH 3, the growth inhibition is attributed to the forms of molybdate ion that exist in solution because most of the complexes have hydrolyzed to oxomolybdate and ligand. The monoalkylhydroxylamine ligand inhibited yeast growth at pH 5, 6 and 7, while the dialkylhydroxylamine ligands had little effect on yeast growth. Growth inhibition of the Mo-dialkylhydroxylamido complexes is observed when a complex exists in the media. A complex that is inert to ligand exchange is not effective even at pH 3 where other Mo-hydroxylamido complexes show growth inhibition as molybdate. These results show that the formation of some Mo complexes can protect yeast from the growth inhibition observed when either the ligand or Mo salt alone are present.  相似文献   
28.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   
29.
The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited. This inhibition is relieved by TGF- beta signalling, to which the future endoderm cell is sensitised by VegT, resulting in the observed dependence on cell contact for maintained Xsox17 expression. We propose that this change in regulation is a consequence of a VegT-induced repressor, inhibiting direct induction of early endoderm markers by VegT, and contributing to the formation of the boundary of the endodermal domain.  相似文献   
30.
Evidence suggests that glucosamine inhibits distal components regulating insulin-stimulated GLUT4 translocation to the plasma membrane. Here we assessed whether key membrane docking and fusion events were targeted. Consistent with a plasma membrane-localized effect, 3T3-L1 adipocytes exposed to glucosamine displayed an increase in cell-surface O-linked glycosylation and a simultaneously impaired mobilization of GLUT4 by insulin. Analysis of syntaxin 4 and SNAP23, plasma membrane-localized target receptor proteins (t-SNAREs) for the GLUT4 vesicle, showed that they were not cell-surface targets of O-linked glycosylation. However, the syntaxin 4 binding protein, Munc18c, was targeted by O-linked glycosylation. This occurred concomitantly with a block in insulin-stimulated association of syntaxin 4 with its cognate GLUT4 vesicle receptor protein (v-SNARE), VAMP2. In conclusion, our data suggest that the mechanism by which glucosamine inhibits insulin-stimulated GLUT4 translocation involves modification of Munc18c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号