首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   7篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   12篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1989年   5篇
  1988年   1篇
  1985年   1篇
  1980年   2篇
  1969年   3篇
  1964年   1篇
  1961年   1篇
  1950年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
101.
Stress is an important contributor to cardiovascular disease and to reduced immunity and fertility. As the role of androgens in stress is uncertain, we investigated the effects of testosterone (T) on hormonal responses to stress in conscious Romney Marsh wethers. Six T-treated sheep and six control sheep were stressed by exposure to a psychological and a metabolic stimulus. Baseline glucose levels were significantly lower in the treated animals compared with controls (p=0.002). T treatment significantly attenuated ACTH (p<0.01) and cortisol (p<0.05) responses to metabolic stress. Following psychological stress, ACTH responses were significantly lower in treated sheep compared with controls (p<0.05), but differences in mean cortisol responses did not reach significance. There were no significant differences in epinephrine or norepinephrine responses following either stressor. We conclude that T replacement in wethers lowers glucose and attenuates responses to metabolic and psychological stress. While the implications of these results for human physiology require further studies, they suggest that male hypogonadism may play a role in determining the risk of cardiovascular disease and diabetes.  相似文献   
102.
Carbon-based secondary metabolites (CBSMs) such as tannins are assumed to function as plant defences against herbivores. CBSMs are thought to be inversely related to growth rate and nutrient concentrations because a physiological trade-off exists between cellular growth and differentiation, but CBSM concentrations can be altered by herbivory-induced changes in the trade-off. We predicted that a significant interaction exists between herbivory and growth phase, such that the effects of large herbivores (or their exclusion) on nutrient or CBSM concentrations are greatest during phases of rapid shoot or leaf growth. Leaf samples were collected during phases of different growth rate from six woody species 4 years after establishment of a large-scale long-term herbivore exclusion experiment in Kruger National Park, South Africa. Samples were analysed for N, P, condensed tannins and total phenolics. Interactions between growth phase and herbivores were rare. However, the assumption that elevated nutrients and reduced CBSMs occurs during fast phases of growth was supported by four species (consistent with the growth-differentiation balance hypothesis), but not the other two. Large herbivores generally did not affect nutrients, but CBSMs in four species were reduced by large herbivores other than elephants, while CBSMs in two species were reduced by elephants. Carbon limitation ultimately prevailed among woody plants taller than 2 m under long-term browsing. Large herbivores and plant growth phase are independent and important determinants of nutrients or CBSMs in African savannas, but the effects depend on the interacting assemblages of species, which poses challenges to the application of current general hypotheses of plant defence.  相似文献   
103.
104.
105.
106.
Microbially influenced corrosion (MIC) is catalysed by a series of metabolic activities of selected micro-organisms, notably by oxidation of cathodic hydrogen by hydrogenase, by hydrogen sulphide and by reduction of ferric iron. The sulphate-reducing bacteria are considered to be the most common catalyst of MIC, whereas the role of other bacteria has been neglected. This study examined the corrosive potential of the facultative sulphide producer, Shewanella putrefaciens , isolated from an industrial cooling water system. Shewanella putrefaciens was shown to reduce ferric iron and sulphite under anaerobic conditions and with ferric iron being the preferred electron acceptor. The isolate could utilize cathodic hydrogen as an energy source, especially when using sulphite as a terminal electron acceptor. In pure culture corrosion experiments, the highest mass loss of mild steel was observed in the presence of sulphite as sole electron acceptor, although mass loss was also detected where ferric iron was the sole electron acceptor. Our data indicate that S. putefaciens plays a role in MIC as it was able to catalyse a variety of corrosion-promoting reactions and to corrode mild steel under pure culture conditions.  相似文献   
107.
108.
The present study evaluated the physiological and biochemical mechanisms through which exogenous sodium hydrosulfide (H2S donor) mitigates chromium (Cr) stress in cauliflower. The different levels of Cr included 0, 10, 100 and 200 µM. Results reported that Cr exposure reduced growth and biomass, chlorophyll (Chl) contents, gas exchange parameters and enzymatic antioxidants. Chromium stress enhanced the production of electrolyte leakage (EL), hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and increased Cr content in the roots, stem, leaf and flowers. Exogenous H2S improved the physiological and biochemical attributes of Cr-stressed cauliflower. Hydrogen sulfide decreased Cr content in different parts of Cr-stressed plants, whereas it increased the Chl contents and gas exchange attributes. H2S reduced the EL, H2O2 and MDA concentrations, enhancing the antioxidant enzymes activities in Cr-stressed roots and leaves compared to the Cr treatments alone. Collectively, our results provide an insight into the protective role of H2S in Cr-stressed cauliflower and suggest H2S as a potential candidate in reducing Cr toxicity in cauliflower and other crops.  相似文献   
109.
110.
Biological Trace Element Research - The present study was conducted to investigate the effects of nano-selenium (Nano Se) or/and vitamin E (VE) on growth performance, blood health, intestinal...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号