首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   33篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1978年   2篇
  1975年   1篇
排序方式: 共有151条查询结果,搜索用时 265 毫秒
131.
The structure of an acidic polysaccharide secreted by a Xanthobacter sp. has been investigated by glycosyl-residue and glycosyl-linkage composition analyses, and the characterization of oligoglycosyl fragments of the polysaccharide has been carried out by chemical analyses, 1H-n.m.r. spectroscopy, fast-atom bombardment mass spectrometry, and electron-impact mass spectrometry. The polysaccharide, which contains O-acetyl groups (approximately 5%) that have not been located, has the tetraglycosyl repeating unit 1 and belongs to a group of structurally related polysaccharides synthesized by both Alcaligenes and Pseudomonas species.  相似文献   
132.
A new oligosaccharide subunit of xyloglucan was isolated from the beta-(1----4)-endoglucanase digestion products of the xyloglucan in what is referred to as "sycamore extracellular polysaccharides" and found to be an undecasaccharide having two terminal alpha-L-fucopyranosyl residues. The undecasaccharide was structurally characterized by 1H-n.m.r. spectroscopy, fast-atom bombardment mass spectrometry (f.a.b.-m.s.), and glycosyl-residue and glycosyl-linkage composition analyses. The structure of the undecasaccharide was confirmed by digesting it with a hydrolase that releases alpha-D-Xylp-(1----6)-D-Glc from the non-reducing end of xyloglucan oligosaccharides.  相似文献   
133.
This paper describes the effect of a plant-derived polygalacturonase-inhibiting protein (PGIP) on the activity of endopolygalacturonases isolated from fungi. PGIP's effect on endopolygalacturonases is to enhance the production of oligogalacturonides that are active as elicitors of phytoalexin (antibiotic) accumulation and other defense reactions in plants. Only oligogalacturonides with a degree of polymerization higher than nine are able to elicit phytoalexin synthesis in soybean cotyledons. In the absence of PGIP, a 1-minute exposure of polygalacturonic acid to endopolygalacturonase resulted in the production of elicitor-active oligogalacturonides. However, the enzyme depolymerized essentially all of the polygalacturonic acid substrate to elicitor-inactive oligogalacturonides within 15 minutes. When the digestion of polygalacturonic acid was carried out with the same amount of enzyme but in the presence of excess PGIP, the rate of production of elicitor-active oligogalacturonides was dramatically altered. The amount of elicitor-active oligogalacturonide steadily increased for 24 hours. It was only after about 48 hours that the enzyme converted the polygalacturonic acid into short, elicitor-inactive oligomers. PGIP is a specific, reversible, saturable, high-affinity receptor for endopolygalacturonase. Formation of the PGIP-endopolygalacturonase complex results in increased concentrations of oligogalacturonides that activate plant defense responses. The interaction of the plant-derived PGIP with fungal endopolygalacturonases may be a mechanism by which plants convert endopolygalacturonase, a factor important for the virulence of pathogens, into a factor that elicits plant defense mechanisms.  相似文献   
134.
The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development.  相似文献   
135.
An α-fucosidase that releases fucosyl residues from oligosaccharide fragments of xyloglucan, a plant cell wall hemicellulosic polysaccharide, was purified to homogeneity from pea (Pisum sativum) epicotyls using a combination of cation exchange chromatography and isoelectric focusing. The α-fucosidase has a molecular mass of 20 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The α-fucosidase has an isoelectric point of 5.5. The substrate specificity of the α-fucosidase was determined by high performance anion exchange chromatographic analysis of oligosaccharide substrates and products. The enzyme hydrolyzes the terminal α-1,2-fucosidic linkage of oligosaccharides and does not cleave p-nitrophenyl-α-L-fucoside. The enzyme does not release measurable amounts of fucosyl residues from large polysaccharides. The subcellular localization of α-fucosidase in pea stems and leaves has been studied by immunogold cytochemistry. The α-fucosidase accumulates in primary cell walls and is not detectable in the middle lamella or in the cytoplasm of 8-day-old stem tissue and 14-day-old leaf tissue. α-Fucosidase activity was readily detected in extracts of 8-day-old stem tissue. No significant α-fucosidase acitivity or immunogold labeling of the α-fucosidase was detected in 2- and 4-day-old stem tissue indicating that production of α-fucosidase is developmentally regulated.  相似文献   
136.
The Mlc1 gene of Drosophila melanogaster encodes two MLC1 isoforms via developmentally regulated alternative pre-mRNA splicing. In larval muscle and tubular and abdominal muscles of adults, all of the six exons are included in the spliced mRNA, whereas, in the fibrillar indirect flight muscle of adult, exon 5 is excluded from the mRNA. We show that this tissue-specific pattern of alternative splicing of the Mlc1 pre-mRNA is conserved in D. simulans, D. pseudoobscura, and D. virilis. Isolation and sequencing of the Mlc1 genes from these three other Drosophila species have revealed that the overall organization of the genes is identical and that the genes have maintained a very high level of sequence identity within the coding region. Pairwise amino acid identities are 94%-99%, and there are no charge changes among the proteins. Total nucleotide divergence within the coding region of the four genes supports the accepted genealogy of these species, but the data indicate a significantly higher rate of amino acid replacement in the branch leading to D. pseudoobscura. A comparison of nucleotide substitutions in the coding portions of exon 5 and exon 6, which encode the alternative carboxyl termini of the two MLC1 isoforms, suggests that exon 5 is subject to greater evolutionary constraints than is exon 6. In addition to the coding sequences, there is significant sequence conservation within the 5' and 3' noncoding DNA and two of the introns, including one that flanks exon 5. These regions are candidates for cis- regulatory elements. Our results suggest that evolutionary constraints are acting on both the coding and noncoding sequences of the Mlc1 gene to maintain proper expression and function of the two MLC1 polypeptides.   相似文献   
137.
138.
IL-7 is known foremost for its immunostimulatory capacities, including potent T cell-dependent catabolic effects on bone. In joint diseases like rheumatoid arthritis and osteoarthritis, IL-7, via immune activation, can induce joint destruction. Now it has been demonstrated that increased IL-7 levels are produced by human articular chondrocytes of older individuals and osteoarthritis patients. IL-7 stimulates production of proteases by IL-7 receptor-expressing chondrocytes and enhances cartilage matrix degradation. This indicates that IL-7, indirectly via immune activation, but also by a direct action on cartilage, contributes to joint destruction in rheumatic diseases.  相似文献   
139.
The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within the mur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1 hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-D-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号