首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7019篇
  免费   498篇
  2023年   33篇
  2022年   57篇
  2021年   193篇
  2020年   105篇
  2019年   133篇
  2018年   197篇
  2017年   181篇
  2016年   268篇
  2015年   388篇
  2014年   438篇
  2013年   546篇
  2012年   713篇
  2011年   657篇
  2010年   387篇
  2009年   351篇
  2008年   460篇
  2007年   427篇
  2006年   377篇
  2005年   356篇
  2004年   296篇
  2003年   266篇
  2002年   236篇
  2001年   34篇
  2000年   37篇
  1999年   48篇
  1998年   50篇
  1997年   29篇
  1996年   31篇
  1995年   28篇
  1994年   22篇
  1993年   20篇
  1992年   22篇
  1991年   13篇
  1990年   12篇
  1989年   13篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   13篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1973年   7篇
  1972年   1篇
  1964年   1篇
排序方式: 共有7517条查询结果,搜索用时 15 毫秒
951.
952.
953.
ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.  相似文献   
954.
Galectin-4 is a carbohydrate-binding protein belonging to the galectin family. Here we provide novel evidence that galectin-4 is selectively expressed and secreted by intestinal epithelial cells and binds potently to activated peripheral and mucosal lamina propria T-cells at the CD3 epitope. The carbohydrate-dependent binding of galectin-4 at the CD3 epitope is fully functional and inhibited T cell activation, cycling and expansion. Galectin-4 induced apoptosis of activated peripheral and mucosal lamina propria T cells via calpain-, but not caspase-dependent, pathways. Providing further evidence for its important role in regulating T cell function, galectin-4 blockade by antisense oligonucleotides reduced TNF-alpha inhibitor induced T cell death. Furthermore, in T cells, galectin-4 reduced pro-inflammatory cytokine secretion including IL-17. In a model of experimental colitis, galectin-4 ameliorated mucosal inflammation, induced apoptosis of mucosal T-cells and decreased the secretion of pro-inflammatory cytokines. Our results show that galectin-4 plays a unique role in the intestine and assign a novel role of this protein in controlling intestinal inflammation by a selective induction of T cell apoptosis and cell cycle restriction. Conclusively, after defining its biological role, we propose Galectin-4 is a novel anti-inflammatory agent that could be therapeutically effective in diseases with a disturbed T cell expansion and apoptosis such as inflammatory bowel disease.  相似文献   
955.
956.
Carbonic anhydrases (CA) play an important role in biomineralization from invertebrates to vertebrates. Previous experiments have investigated the role of CA in coral calcification, mainly by pharmacological approaches. This study reports the molecular cloning, sequencing, and immunolocalization of a CA isolated from the scleractinian coral Stylophora pistillata, named STPCA. Results show that STPCA is a secreted form of alpha-CA, which possesses a CA catalytic function, similar to the secreted human CAVI. We localized this enzyme at the calicoblastic ectoderm level, which is responsible for the precipitation of the skeleton. This localization supports the role of STPCA in the calcification process. In symbiotic scleractinian corals, calcification is stimulated by light, a phenomenon called "light-enhanced calcification" (LEC). The mechanism by which symbiont photosynthesis stimulates calcification is still enigmatic. We tested the hypothesis that coral genes are differentially expressed under light and dark conditions. By real-time PCR, we investigated the differential expression of STPCA to determine its role in the LEC phenomenon. Results show that the STPCA gene is expressed 2-fold more during the dark than the light. We suggest that in the dark, up-regulation of the STPCA gene represents a mechanism to cope with night acidosis.  相似文献   
957.
CRC-associated P53 mutations have not been studied extensively in non-Western countries at relatively low CRC risk. We examined, for the first time, 196 paraffin-embedded CRC cases from Northern Iran for mutations in P53 exons 5-8 using PCR-direct sequencing. P53 status and mutation site/type were correlated with nuclear protein accumulation, clinicopathologic variables and data on K-ras mutations and high-level microsatellite instability (MSI-H). We detected 96 P53 mutations in 87 (44.4%) cases and protein accumulation in 84 cases (42.8%). P53 mutations correlated directly with stage and inversely with MSI-H. Distal CRCs were more frequently mutated at major CpG hotspot codons [248 (8/66, 12.1%), 175 (7/66, 10.6%), and 245 (7/66, 10.6%)], while in proximal tumors codon 213, emerged as most frequently mutated (5/28, 17.9% vs. 3/66, 4.5%, P = 0.048). Transitions at CpGs, the most common mutation type, were more frequent in non-mucinous (25% vs. 10.4% in mucinous, P = 0.032), and distal CRC (27% vs. 12.5% in proximal, P = 0.02), and correlated with K-ras transversions. Transitions at non-CpGs, second most common P53 mutation, were more frequent in proximal tumors (15.6% vs. 4.7% in distal, P = 0.01), and correlated with K-ras transitions and MSI-H. Overall frequency and types of mutations and correlations with P53 accumulation, stage and MSI-H were as reported for non-Iranian patients. However P53 mutation site/type and correlations between P53 and K-ras mutation types differed between proximal and distal CRC. The codon 213 P53 mutation that recurred in proximal CRC was previously reported as frequent in esophageal cancer from Northern Iran.  相似文献   
958.
The Salmonella enterica serotype Typhimurium (S. Typhimurium) genome encodes 12 intestinal colonization factors of the chaperone/usher fimbrial assembly class; however, the binding specificity is known for only one of these adhesins, known as type 1 fimbriae. Here we explored the utility of glycomics to determine the carbohydrate binding specificity of plasmid-encoded fimbriae from S. Typhimurium. A cosmid carrying the pef operon was introduced into Escherichia coli and expression of fimbrial filaments composed of PefA confirmed by flow cytometry and immune-electron microscopy. Plasmid-encoded fimbriae were purified from the surface of E. coli, and the resulting preparation was shown to contain PefA as the sole major protein component. The binding of purified plasmid-encoded fimbriae to a glycanarray suggested that this adhesin specifically binds the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc, also known as the Lewis X (Le(x)) blood group antigen. Results from the glycanarray were validated by enzyme-linked immunosorbent assay (ELISA) in which plasmid-encoded fimbriae bound Le(x)-coated wells in a concentration-dependent manner. The binding of plasmid-encoded fimbriae to Le(x)-coated wells could be inhibited by co-incubation with soluble Le(x) antigen. Our results establish glycomic analysis as a promising new approach for determining the carbohydrate binding specificity of bacterial adhesins.  相似文献   
959.
960.
There is evidence that brain lateralization underlying hemispheric specialization can be observed also at biochemical level. However, hemispheric differences in nitric oxide mediator system have not yet been evaluated. The hippocampus and planum temporale are highly asymmetrical regions but the degree of their laterality is altered in demented or psychotic people. In the study, l-glutamate/l-arginine/l-citrulline concentrations, nitric oxide synthase activities/expressions and nitrites/nitrates levels were estimated in autoptic hippocampi. Right/left laterality in endothelial synthase activity and in nitrites/nitrates was observed in controls. Lateral changes were estimated in patients with Alzheimer disease (a marked increase in activities of constitutive synthases and in expression of inducible enzyme in the left side) and schizophrenia (an increase in activities of all enzymes especially in the right side). Significant shifts from positive to negative correlations were found between laterality of some components of nitric oxide pathway and of planum temporale volumetry under pathological conditions. The hippocampal nitric oxide system appears to be globally right/left lateralized, especially via actions of highly asymmetrical endothelial synthase. The results suggest a specific involvement of all synthases in the development of selected diseases and show that lateral analyses are of sufficient sensitivity to reveal subtle links. The volumetric asymmetry of the planum temporale as a marker of handedness is not probably simply linked to brain laterality at biochemical level but reflects alterations due to pathological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号