首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   152篇
  2023年   12篇
  2022年   18篇
  2021年   57篇
  2020年   26篇
  2019年   36篇
  2018年   45篇
  2017年   43篇
  2016年   66篇
  2015年   99篇
  2014年   129篇
  2013年   130篇
  2012年   139篇
  2011年   125篇
  2010年   93篇
  2009年   75篇
  2008年   96篇
  2007年   85篇
  2006年   93篇
  2005年   68篇
  2004年   59篇
  2003年   60篇
  2002年   47篇
  2001年   7篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   13篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1927年   1篇
排序方式: 共有1751条查询结果,搜索用时 15 毫秒
991.
992.

Background  

Modeling a dynamical biological system is often a difficult task since the a priori unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).  相似文献   
993.
994.
Finite element analysis (FEA) is a powerful tool to characterize the functional behaviour of bone. Here we use this technique to study the metacarpal arrangement of the Asian elephant. The objective of this work is to search for valid criteria that distinguish the known natural arrangement among a variety of configurations, including some fictitious ones. FEA yields significant statistical differences within the three arrangements tested. Our calculations suggest that the median value of stress (von Mises) could be a discriminant criterion, at least in graviportal taxa. Such a method could thus be applied to other graviportal organisms such as sauropod dinosaurs.  相似文献   
995.
We address here the issue of prioritizing non-coding mutations in the tumoral genome. To this aim, we created two independent computational models. The first (germline) model estimates purifying selection based on population SNP data. The second (somatic) model estimates tumor mutation density based on whole genome tumor sequencing. We show that each model reflects a different set of constraints acting either on the normal or tumor genome, and we identify the specific genome features that most contribute to these constraints. Importantly, we show that the somatic mutation model carries independent functional information that can be used to narrow down the non-coding regions that may be relevant to cancer progression. On this basis, we identify positions in non-coding RNAs and the non-coding parts of mRNAs that are both under purifying selection in the germline and protected from mutation in tumors, thus introducing a new strategy for future detection of cancer driver elements in the expressed non-coding genome.  相似文献   
996.
Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.  相似文献   
997.
The re-examination of the presumed hagfish Myxineidus gononorum from the Carboniferous of Montceau-les-Mines by means of propagation phase contrast X-ray synchrotron microtomography confirms the presence of two series of non-mineralized denticles arranged in chevrons in the oral region. It also indicates the presence of possible traces of post-mortem mineralized soft tissues. A peculiar zone of less X ray-absorbing matter around the animal suggests the presence of an enlarged, lamprey-like oral disc. Re-interpreting Myxineidus as a lamprey would be in better agreement with the reputedly fresh-water environment of the Montceau-les-Mines Lagerstätte.  相似文献   
998.
In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model’s predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.  相似文献   
999.
F-box proteins: more than baits for the SCF?   总被引:1,自引:0,他引:1  
Progression through the mammalian cell cycle is associated with the activity of four cyclin dependent kinases (Cdc2/Cdk1, Cdk2, Cdk4, and Cdk6). Knockout mouse models have provided insight into the interplay of these Cdks. Most of these models do not exhibit major cell cycle defects revealing redundancies, and suggesting that a single Cdk might be sufficient to drive the cell cycle, similar as in yeast. Recent work on Cdk2/Cdk4 double knockouts has indicated that these two Cdks are required to phosphorylate Rb during late embryogenesis. The lack of Rb phosphorylation is progressive and associated with reduced E2F-inducible gene expression. Cdk2 and Cdk4 share the essential function of coupling the G1/S transition with mitosis. However, proliferation in early embryogenesis appears to be independent of Cdk2 and Cdk4. We discuss these observations and propose molecular mechanisms that establish the requirement for Cdk2 and Cdk4 at the G1/S transition. We are considering that the balance between proliferation and differentiation is disturbed, which affects especially heart development and leads to embryonic lethality in Cdk2 -/- Cdk4 -/- mutants. We also discuss the specific functions of Cdk4 and Cdk6, which ironically do not compensate for each other.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号