首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4352篇
  免费   272篇
  2023年   15篇
  2022年   15篇
  2021年   76篇
  2020年   52篇
  2019年   59篇
  2018年   85篇
  2017年   75篇
  2016年   112篇
  2015年   160篇
  2014年   188篇
  2013年   287篇
  2012年   321篇
  2011年   333篇
  2010年   208篇
  2009年   189篇
  2008年   313篇
  2007年   272篇
  2006年   283篇
  2005年   261篇
  2004年   231篇
  2003年   201篇
  2002年   170篇
  2001年   56篇
  2000年   53篇
  1999年   65篇
  1998年   28篇
  1997年   34篇
  1996年   29篇
  1995年   29篇
  1994年   14篇
  1993年   22篇
  1992年   46篇
  1991年   43篇
  1990年   33篇
  1989年   28篇
  1988年   33篇
  1987年   23篇
  1986年   19篇
  1985年   17篇
  1984年   29篇
  1983年   9篇
  1982年   11篇
  1981年   8篇
  1980年   8篇
  1979年   17篇
  1978年   11篇
  1974年   5篇
  1972年   8篇
  1969年   7篇
  1965年   4篇
排序方式: 共有4624条查询结果,搜索用时 15 毫秒
81.
82.
83.
Togaki  Daisuke  Doi  Hideyuki  Katano  Izumi 《Limnology》2020,21(2):267-267
Limnology - In the original publication of the article the sentence under the heading “Primer and probe design” was published incorrectly. The correct sentence is given in this correction.  相似文献   
84.
Reproductive interference is interspecific sexual interactions that are costly to at least one species involved. Although many studies have reported a substantial fitness cost associated with reproductive interference, suggesting its ecological significance, others have not observed reproductive interference in study species. Reproductive interference that incurs a large fitness cost is more likely to occur during secondary contacts than between long-coexisting species. I first explain the rationale underlying this prediction using existing literature. Next, I present a conceptual framework to classify pairs of interacting species into one of four states, defined by the ecological and evolutionary stabilities of the species pairs. I discuss how the stability states of species pairs are likely to change over time, along with changes in the demographic and evolutionary role of reproductive interference. I then perform literature survey to test the prediction that reproductive interference should be more prevalent in secondary contact. Finally, I discuss the implications of the proposed conceptual framework and literature survey result.  相似文献   
85.
Human carboxylesterase 1 (hCES1) is an enzyme that plays an important role in hydrolysis of pharmaceuticals in the human liver. In this study, elucidation of the chiral recognition ability of hCES1 was attempted using indomethacin esters in which various chiral alcohols were introduced. Indomethacin was condensed with various chiral alcohols to synthesize indomethacin esters. The synthesized esters were hydrolyzed with a human liver microsome (HLM) solution and a human intestine microsome (HIM) solution. High hydrolytic rate and high stereoselectivity were confirmed in the hydrolysis reaction in the HLM solution but not in the HIM solution, and these indomethacin esters were thought to be hydrolyzed by hCES1. Next, these indomethacin esters were hydrolyzed in recombinant hCES1 solution and the hydrolysis rates of the esters were calculated. The stereoselectivity confirmed in HLM solution was also confirmed in the hCES1 solution. In the hydrolysis reaction of esters in which a phenyl group is bonded next to the ester, the Vmax value of the (R) form was 10 times larger than that of the (S) form.  相似文献   
86.
ABSTRACT

Using a crude enzyme solution prepared from astigmatid mites, the conversion reaction to (Z,Z)-6,9-heptadecadiene (6,9-C17) using linoleyl aldehyde (LAld) as a substrate was successful. The mass spectrum of the reaction product using 13C-labeled LAld as a substrate could be assigned as 13C-labeled 6,9-C17. Unlike the findings in other species, the decarbonylase derived from mites did not require a coenzyme.  相似文献   
87.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   
88.
89.
90.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号