首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5777篇
  免费   465篇
  国内免费   1篇
  2023年   38篇
  2022年   62篇
  2021年   185篇
  2020年   118篇
  2019年   146篇
  2018年   193篇
  2017年   168篇
  2016年   251篇
  2015年   317篇
  2014年   380篇
  2013年   396篇
  2012年   427篇
  2011年   394篇
  2010年   224篇
  2009年   217篇
  2008年   285篇
  2007年   251篇
  2006年   198篇
  2005年   204篇
  2004年   171篇
  2003年   151篇
  2002年   139篇
  2001年   126篇
  2000年   104篇
  1999年   98篇
  1998年   46篇
  1997年   47篇
  1996年   41篇
  1995年   29篇
  1994年   36篇
  1993年   29篇
  1992年   56篇
  1991年   64篇
  1990年   51篇
  1989年   41篇
  1988年   40篇
  1987年   41篇
  1986年   57篇
  1985年   36篇
  1984年   35篇
  1983年   30篇
  1982年   28篇
  1981年   25篇
  1980年   20篇
  1979年   19篇
  1978年   28篇
  1977年   30篇
  1976年   17篇
  1975年   30篇
  1974年   20篇
排序方式: 共有6243条查询结果,搜索用时 281 毫秒
991.
Choline-deficiency causes liver cells to die by apoptosis, and it has not been clear whether the effects of choline-deficiency are mediated by methyl-deficiency or by lack of choline moieties. SV40 immortalized CWSV-1 hepatocytes were cultivated in media that were choline-sufficient, choline-deficient, choline-deficient with methyl-donors (betaine or methionine), or choline-deficient with extra folate/vitamin B12. Choline-deficient CWSV-1 hepatocytes were not methyl-deficient as they had increased intracellular S-adenosylmethionine concentrations (132% of control; P < 0.01). Despite increased phosphatidylcholine synthesis via sequential methylation of phosphatidylethanolamine, choline-deficient hepatocytes had significantly decreased (P < 0.01) intracellular concentrations of choline (20% of control), phosphocholine (6% of control), glycerophosphocholine (15% of control), and phosphatidylcholine (55% of control). Methyl-supplementation in choline-deficiency enhanced intracellular methyl-group availability, but did not correct choline-deficiency induced abnormalities in either choline metabolite or phospholipid content in hepatocytes. Methyl-supplemented, choline-deficient cells died by apoptosis. In a rat study, 2 weeks of a choline-deficient diet supplemented with betaine did not prevent the occurrence of fatty liver and the increased DNA strand breakage induced by choline-deficiency. Though dietary supplementation with betaine restored hepatic betaine concentration and increased hepatic S-adenosylmethionine/S-adenosylhomocysteine ratio, it did not correct depleted choline (15% of control), phosphocholine (6% control), or phosphatidylcholine (48% of control) concentrations in deficient livers. These data show that decreased intracellular choline and/or choline metabolite concentrations, and not methyl deficiency, are associated with apoptotic death of hepatocytes. J. Cell. Biochem, 64:196–208. © 1997 Wiley-Liss, Inc.  相似文献   
992.
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.  相似文献   
993.
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients’ striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.Subject terms: Diseases of the nervous system, Molecular neuroscience  相似文献   
994.
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.

The transport of Ca2+ across the membranes of subcellular compartments contributes to cytosolic Ca2+ homeostasis as well as environmental and developmental responses.  相似文献   
995.
Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.  相似文献   
996.
Inverted metamorphic Ga0.3In0.7As photovoltaic converters with sub-0.60 eV bandgaps grown on InP and GaAs are presented. Threading dislocation densities are 1.3 ± 0.6 × 106 and 8.9 ± 1.7 × 106 cm−2 on InP and GaAs, respectively. The devices generate open-circuit voltages of 0.386 and 0.383 V, respectively, under irradiance producing a short-circuit current density of ≈10 A cm−2, yielding bandgap-voltage offsets of 0.20 and 0.21 V. Power and broadband reflectance measurements are used  to estimate thermophotovoltaic (TPV) efficiency. The InP-based cell is estimated to yield 1.09 W cm−2 at 1100 °C versus 0.92 W cm−2 for the GaAs-based cell, with efficiencies of 16.8 versus 9.2%. The efficiencies of both devices are limited by sub-bandgap absorption, with power weighted sub-bandgap reflectances of 81% and 58%, respectively, the majority of which is assumed to occur in the graded buffers. The 1100 °C TPV efficiencies are estimated to increase to 24.0% and 20.7% in structures with the graded buffer removed, if previously demonstrated reflectance is achieved. These devices also have application to laser power conversion in the 2.0–2.3 µm atmospheric window. Peak laser power converter efficiencies of 36.8% and 32.5% are estimated under 2.0 µm irradiances of 1.86 and 2.81 W cm−2, respectively.  相似文献   
997.
The receptor tyrosine kinase ARK (also called AXL or UFO) is the murine prototype of a small family of receptors with an extracellular domain resembling cell adhesion molecules and a conserved tyrosine kinase domain. ARK is capable of homophilic binding, as well as of binding to GAS6, a secreted member of the class of vitamin K dependent proteins whose expression is up-regulated in growth-arrested cells. To gain understanding of the physiological role of ARK signaling, we have investigated the ARK forms which are expressed by cells in culture as well as by mouse organs. We found that ARK is not only expressed as a transmembrane protein, but is also cleaved in the extracellular domain to generate a soluble ARK form of about 65 kDa, which is easily detected in conditioned media of ARK expressing cells, in serum and plasma and in mouse organs. Soluble ARK is also produced by tumor cells in vivo. The function of these molecules could be that of binding GAS6, thereby inhibiting the interaction of this ligand with its cell-associated receptor, or they could be involved in binding to ARK itself. © 1996 Wiley-Liss, Inc.  相似文献   
998.
999.
Herein we describe the discovery of IDX21437 35b, a novel RP d-aminoacid-based phosphoramidate prodrug of 2′-α-chloro-2′-β-C-methyluridine monophosphate. Its corresponding triphosphate 6 is a potent inhibitor of the HCV NS5B RNA-dependent RNA polymerase (RdRp). Despite showing very weak activity in the in vitro Huh-7 cell based HCV replicon assay, 35b demonstrated high levels of active triphosphate 6 in mouse liver and human hepatocytes. A biochemical study revealed that the metabolism of 35b was mainly attributed to carboxyesterase 1 (CES1), an enzyme which is underexpressed in HCV Huh-7-derived replicon cells. Furthermore, due to its metabolic activation, 35b was efficiently processed in liver cells compared to other cell types, including human cardiomyocytes. The selected RP diastereoisomeric configuration of 35b was assigned by X-ray structural determination. 35b is currently in Phase II clinical trials for the treatment of HCV infection.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号