首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   22篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   18篇
  2014年   21篇
  2013年   22篇
  2012年   28篇
  2011年   26篇
  2010年   18篇
  2009年   12篇
  2008年   18篇
  2007年   17篇
  2006年   14篇
  2005年   9篇
  2004年   12篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
81.

Background  

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US70 billion per year. There are 115 species in the < i > Coffea < /i > genus, but only two, < i > C. arabica < /i > and < i > C. canephora < /i > , are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer ( < i > Hypotheneumus hampei < /i > ), is responsible for worldwide annual losses of around US70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants.  相似文献   
82.
Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK. This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a combination of modeling and comparative genomics approaches. These sites are systematically located in replication termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.  相似文献   
83.
Leishmaniasis is a group of diseases with a large spectrum of clinical manifestations caused by protozoans of the genus Leishmania. Here we demonstrate the leishmanicidal activity of the essential oil of Ocimum gratissimum as well as its main constituent, eugenol. The eugenol-rich essential oil of O. gratissimum progressively inhibited Leishmania amazonensis growth at concentrations ranging from 100 to 1000 microg/ml. The IC50 (sub-inhibitory concentration) of the essential oil for promastigotes and amastigotes were respectively 135 and 100 microg/ml and the IC50 of eugenol was 80 microg/ml for promastigote forms. L. amazonensis exposed to essential oil at concentrations corresponding to IC50 for promastigotes and for amastigotes underwent considerable ultrastructural alterations, as shown by transmission electron microscopy. Two or more nuclei or flagella were observed in 31% and 23.3% of treated amastigote and promastigote forms, respectively, suggesting interference in cell division. Considerable mitochondrial swelling was observed in essential oil-treated promastigotes and amastigotes, which had the inner mitochondrial membrane altered, with a significant increase in the number of cristae; in some amastigotes the mitochondrial matrix became less electron-dense. The minimum inhibitory concentration for both promastigotes and amastigotes was 150 microg/ml. Pretreatment of mouse peritoneal macrophages with 100 and 150 microg/ml essential oil reduced the indices of association between promastigotes and the macrophages, followed by increased in nitric oxide production by the infected macrophages. The essential oil showed no cytototoxic effects against mammalian cells. This set of results suggests that O. gratissimum essential oil and its compounds could be used as sources for new antileishmanial drugs.  相似文献   
84.
Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low potential one-electron donors (ferredoxin, flavodoxin, adrenodoxin) to redox-based metabolisms in plastids, mitochondria and bacteria. Two great families of FAD-containing proteins displaying FNR activity have evolved from different and independent origins. The enzymes present in mitochondria and some bacterial genera are members of the structural superfamily of disulfide oxidoreductases whose prototype is glutathione reductase. A second group, comprising the FNRs from plastids and most eubacteria, constitutes a unique family, the plant-type FNRs, totally unrelated in sequence with the former. The two-domain structure of the plant family of FNR also provides the basic scaffold for an extended superfamily of electron transfer flavoproteins. In this article we compare FNR flavoenzymes from very different origins and describe how the natural history of these reductases shaped structure, flavin conformation and catalytic activity to face the very different metabolic demands they have to deal with in their hosts. We show that plant-type FNRs can be classified into a plastidic class, characterised by extended FAD conformation and high catalytic efficiency, and a bacterial class displaying a folded FAD molecule and low turnover rates. Sequence alignments supported this classification, providing a criterion to predict the structural and biochemical properties of newly identified members of the family.  相似文献   
85.
The bioassay-guided fractionation of stems from Kielmeyera variabilis, traditionally used in Brazilian folk medicine, yielded assiguxanthone-B (1), kielcorin (4), 2,5-dihydroxybenzoic acid (3), and a mixture of xanthones containing assiguxanthone-B (1) and 1,3,5,6-tetrahydroxy-2-prenylxanthone (2) (1:1 w/w). The xanthone mixture inhibited Staphylococcus aureus and Bacillus subtilis at a concentration of 6.25 g/ml. When tested alone, the minimal inhibitory concentration of assiguxanthone-B was 25 g/ml against B. subtilis. Kielcorin and 2,5-dihydroxybenzoic acid were inactive against both strains. None of the fractions was active against Escherichia coli or Pseudomonas aeruginosa. Viable cells of S. aureus were reduced by a 1-3 log CFU/ml within 12 h after exposure of one to eight times the MIC of the xanthone mixture. It is not known whether the tetrahydroxy-2-prenylxanthone or other components of the xanthone mixture are responsible for the main antibacterial activity or whether additive or synergistic action is involved  相似文献   
86.
The organization of filamentous actin (F-actin) in living cells of the oomycete Phytophthora cinnamomi was determined during zoosporogenesis and zoospore encystment by microinjecting sporangia with fluorescently labeled phalloidin and observing resultant fluorescence by confocal microscopy. In multinucleate sporangia prior to the induction of cleavage, phalloidin labeling took the form of plaques which occurred mainly in the periphery of the sporangia. After induction of cleavage, phalloidin labeling showed that the plaques disappeared and that F-actin began to accumulate along the developing cleavage planes and around nuclei and water expulsion vacuoles. F-actin labeling was also observed near the plasma membrane in zoospores and young cysts but reverted to the plaque form in older cysts. Localization of F-actin close to the developing cleavage planes is consistent with the idea that actin microfilaments function in the positioning and expansion of the cleavage membranes. Observations of plaques of actin in living sporangia provide evidence that plaques are not aldehyde-induced fixation artifacts. Copyright 1998 Academic Press.  相似文献   
87.
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.   相似文献   
88.
Perennial grass mixtures established on Conservation Reserve Program (CRP) lands can be an important source of feedstock for bioenergy production. This study aimed to evaluate management practices for optimizing the quality of bioenergy feedstock and stand persistence of grass-legume mixtures under diverse environments. A 5-year field study (2008–2012) was conducted to assess the effects of two harvest timings (at anthesis vs after complete senescence) and three nitrogen (N) rates (0, 56, 112 kg N ha−1) on biomass chemical compositions (i.e., cell wall components, ash, volatiles, total carbon, and N contents) and the feedstock energy potential, examined by the theoretical ethanol yield (TEY) and the total TEY (i.e., the product of biomass yield and TEY, L ha−1), of cool-season mixtures in Georgia and Missouri and a warm-season mixture in Kansas. The canonical correlation analysis (CCA) was used to investigate the effect of vegetative species transitions on feedstock quality. Although environmental variations (mainly precipitation) greatly influenced the management effect on chemical compositions, the delayed harvest after senescence generally improved feedstock quality. In particular, the overall cell wall concentrations and TEY of the warm-season mixtures increased by approximately 7%. Additional N supplies improved the total TEY of both mixtures by ~1.6–4.2 L ha−1 per 1.0 kg N ha−1 input but likely lowered the feedstock quality, particularly for the cool-season mixture. The cell wall concentrations of cool-season mixture reduced by approximately 3%–6%. The CCA results indicated that the increased legume compositions (under low N input) likely enhanced lignin but reduced ash concentrations. This field research demonstrated that with proper management, grass-legume mixtures on CRP lands can provide high-quality feedstock for bioenergy productions.  相似文献   
89.
The ATM and ATR kinases signal cell cycle checkpoint responses to DNA damage. Inactive ATM is an oligomer that is disrupted to form active monomers in response to ionizing radiation. We examined whether ATR is activated by a similar mechanism. We found that the ATRIP subunit of the ATR kinase and ATR itself exist as homooligomers in cells. We did not detect regulation of ATR or ATRIP oligomerization after DNA damage. The predicted coiled-coil domain of ATRIP is essential for ATRIP oligomerization, stable ATR binding, and accumulation of ATRIP at DNA lesions. Additionally, the ATRIP coiled-coil is also required for ATRIP to support ATR-dependent checkpoint signaling to Chk1. Replacing the ATRIP coiled-coil domain with a heterologous dimerization domain restored stable binding to ATR and localization to damage-induced intranuclear foci. Thus, the ATR-ATRIP complex exists in higher order oligomeric states within cells and ATRIP oligomerization is essential for its function.  相似文献   
90.
With the advent of larger genome databases detection of horizontal gene transfer events has been transformed into an increasingly important issue. Here we present a simple theoretical analysis based on the in silico artificial addition of known foreign genes from different prokaryotic groups into the genome of Escherichia coli K12 MG1655. Using this dataset as a control, we have tested the efficiency of four methodologies commonly employed to detect HTG (Horizontally transferred genes), which are based on (a) the codon adaptation index, codon usage, and GC percentage (CAI/GC); (b) a distributional profile (DP) approach made by a gene search in the closely related phylogenetic genomes; (c) a Bayesian model (BM); and (d) a first-order Markov model (MM). All methods exhibit limitations although, as shown here, the BM and the MM are better approximations. Moreover, the MM has demonstrated a more accurate rate of detections when genes from closely related organisms are evaluated. The application of the MM to detect recently transferred genes in the genomes of E. coli strains K12 MG1655, O157 EDL933, and Salmonella typhimurium, shows that these organisms have undergone a rather significant amount of HTG, most of which appear to be pseudogenes. Few of these sequences that have undergone HGT appear to have well defined functions and may be involved in the organism's adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号