首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   152篇
  国内免费   1篇
  2023年   6篇
  2021年   24篇
  2020年   14篇
  2019年   20篇
  2018年   21篇
  2017年   19篇
  2016年   39篇
  2015年   87篇
  2014年   99篇
  2013年   130篇
  2012年   155篇
  2011年   155篇
  2010年   127篇
  2009年   70篇
  2008年   109篇
  2007年   130篇
  2006年   101篇
  2005年   99篇
  2004年   82篇
  2003年   100篇
  2002年   64篇
  2001年   24篇
  2000年   15篇
  1999年   17篇
  1998年   13篇
  1997年   15篇
  1996年   14篇
  1995年   15篇
  1994年   18篇
  1993年   10篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   9篇
  1987年   5篇
  1986年   9篇
  1984年   8篇
  1982年   6篇
  1981年   11篇
  1980年   5篇
  1979年   8篇
  1977年   9篇
  1974年   6篇
  1972年   5篇
  1970年   4篇
  1969年   7篇
  1967年   4篇
  1953年   6篇
  1950年   5篇
排序方式: 共有1975条查询结果,搜索用时 31 毫秒
71.
The development of a biopharmaceutical production process usually occurs sequentially, and tedious optimization of each individual unit operation is very time-consuming. Here, the conditions established as optimal for one-step serve as input for the following step. Yet, this strategy does not consider potential interactions between a priori distant process steps and therefore cannot guarantee for optimal overall process performance. To overcome these limitations, we established a smart approach to develop and utilize integrated process models using machine learning techniques and genetic algorithms. We evaluated the application of the data-driven models to explore potential efficiency increases and compared them to a conventional development approach for one of our development products. First, we developed a data-driven integrated process model using gradient boosting machines and Gaussian processes as machine learning techniques and a genetic algorithm as recommendation engine for two downstream unit operations, namely solubilization and refolding. Through projection of the results into our large-scale facility, we predicted a twofold increase in productivity. Second, we extended the model to a three-step model by including the capture chromatography. Here, depending on the selected baseline-process chosen for comparison, we obtained between 50% and 100% increase in productivity. These data show the successful application of machine learning techniques and optimization algorithms for downstream process development. Finally, our results highlight the importance of considering integrated process models for the whole process chain, including all unit operations.  相似文献   
72.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
73.
Tandem affinity purification (TAP) is a generic two-step affinity purification protocol for isolation of TAP-tagged proteins together with associated proteins. We used bacterial artificial chromosome to heterologously express TAP-tagged murine Sgo1 protein in human HeLa cells. This allowed us to test the functionality of the Sgo1-TAP protein by RNA interference-mediated depletion of the endogenous human Sgo1. Here, we present an optimized protocol for purification of TAP-tagged Sgo1 protein as well as KIAA1387 from HeLa cells with detailed instructions. The purification protocol can be completed in 1 day and it should be applicable to other proteins.  相似文献   
74.
Recent studies have demonstrated that the reduction of the core fucosylation on N-glycans of human IgGs is responsible for a clearly enhanced antibody-dependent cellular cytotoxicity (ADCC). This finding might give access to improved active therapeutic antibodies. Here, the expression of the tumor antigen-specific antibody IGN311 was performed in a glyco-optimized strain of the moss Physcomitrella patens. Removal of plant specific N-glycan structures in this plant expression host was achieved by targeted knockout of corresponding genes and included quantitative elimination of core fucosylation. Antibodies transiently expressed and secreted by such genetically modified moss protoplasts assembled correctly, showed an unaltered antigen-binding affinity and, in extensive tests, revealed an up to 40-fold enhanced ADCC. Thus, the glyco-engineered moss-based transient expression platform combines a rapid technology with the subsequent analysis of glycooptimized therapeutics with regard to advanced properties.  相似文献   
75.

Background

Feasibility of genotyping of hundreds and thousands of single nucleotide polymorphisms (SNPs) in thousands of study subjects have triggered the need for fast, powerful, and reliable methods for genome-wide association analysis. Here we consider a situation when study participants are genetically related (e.g. due to systematic sampling of families or because a study was performed in a genetically isolated population). Of the available methods that account for relatedness, the Measured Genotype (MG) approach is considered the ‘gold standard’. However, MG is not efficient with respect to time taken for the analysis of genome-wide data. In this context we proposed a fast two-step method called Genome-wide Association using Mixed Model and Regression (GRAMMAR) for the analysis of pedigree-based quantitative traits. This method certainly overcomes the drawback of time limitation of the measured genotype (MG) approach, but pays in power. One of the major drawbacks of both MG and GRAMMAR, is that they crucially depend on the availability of complete and correct pedigree data, which is rarely available.

Methodology

In this study we first explore type 1 error and relative power of MG, GRAMMAR, and Genomic Control (GC) approaches for genetic association analysis. Secondly, we propose an extension to GRAMMAR i.e. GRAMMAR-GC. Finally, we propose application of GRAMMAR-GC using the kinship matrix estimated through genomic marker data, instead of (possibly missing and/or incorrect) genealogy.

Conclusion

Through simulations we show that MG approach maintains high power across a range of heritabilities and possible pedigree structures, and always outperforms other contemporary methods. We also show that the power of our proposed GRAMMAR-GC approaches to that of the ‘gold standard’ MG for all models and pedigrees studied. We show that this method is both feasible and powerful and has correct type 1 error in the context of genome-wide association analysis in related individuals.  相似文献   
76.
The non-receptor tyrosine kinase Syk is mainly expressed in the hematopoietic system and plays an essential role in beta(2) integrin-mediated leukocyte activation. To elucidate the signaling pathway downstream of Syk during beta2 integrin (CD11/CD18)-mediated migration and extravasation of polymorphonuclear neutrophils (PMN), we generated neutrophil-like differentiated HL-60 (dHL-60) cells expressing a fluorescently tagged Syk mutant lacking the tyrosine residue at the position 323 (Syk-Tyr323) that is known to be required for the binding of the regulatory subunit p85 of the phosphatidylinositol 3-kinase (PI3K) class I(A). Syk-Tyr323 was found to be critical for the enrichment of the catalytic subunit p110delta of PI3K class I(A) as well as for the generation of PI3K products at the leading edge of the majority of polarized cells. In accordance, the translocation of PI3K p110delta to the leading edge was diminished in Syk deficient murine PMN. Moreover, the expression of EGFP-Syk Y323F interfered with proper cell polarization and it impaired efficient migration of dHL-60 cells. In agreement with a major role of beta2 integrins in the recruitment of phagocytic cells to sites of lesion, mice with a Syk-deficient hematopoietic system demonstrated impaired PMN infiltration into the wounded tissue that was associated with prolonged cutaneous wound healing. These data imply a novel role of Syk via PI3K p110delta signaling for beta2 integrin-mediated migration which is a prerequisite for efficient PMN recruitment in vivo.  相似文献   
77.
78.
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane-cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co-occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate-limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome-assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human-impacted carbon cycle.  相似文献   
79.
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.  相似文献   
80.
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号