首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   192篇
  2019年   19篇
  2017年   23篇
  2016年   35篇
  2015年   40篇
  2014年   45篇
  2013年   49篇
  2012年   86篇
  2011年   75篇
  2010年   49篇
  2009年   45篇
  2008年   69篇
  2007年   54篇
  2006年   42篇
  2005年   33篇
  2004年   52篇
  2003年   50篇
  2002年   59篇
  2001年   58篇
  2000年   49篇
  1999年   45篇
  1998年   30篇
  1997年   24篇
  1996年   24篇
  1995年   26篇
  1994年   21篇
  1993年   23篇
  1992年   48篇
  1991年   38篇
  1990年   38篇
  1989年   35篇
  1988年   30篇
  1987年   44篇
  1986年   23篇
  1985年   31篇
  1984年   18篇
  1983年   27篇
  1982年   28篇
  1981年   17篇
  1980年   20篇
  1979年   31篇
  1978年   17篇
  1977年   19篇
  1976年   21篇
  1975年   25篇
  1974年   21篇
  1973年   19篇
  1972年   22篇
  1971年   22篇
  1970年   19篇
  1969年   19篇
排序方式: 共有1975条查询结果,搜索用时 31 毫秒
131.
132.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal structure of human SULT1A3, complexed with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.5 A resolution and carried out quantitative structure-activity relationship (QSAR) analysis with a series of phenols and catechols. SULT1A3 adopts a similar fold to mouse estrogen sulfotransferase, with a central five-stranded beta-sheet surrounded by alpha-helices. SULT1A3 is a dimer in solution but crystallized with a monomer in the asymmetric unit of the cell, although dimer interfaces were formed by interaction across crystallographic 2-fold axes. QSAR analysis revealed that the enzyme is highly selective for catechols, and catecholamines in particular, and that hydrogen bonding groups and lipophilicity (cLogD) strongly influenced K(m). We also investigated further the role of Glu(146) in SULT1A3 using site-directed mutagenesis and showed that it plays a key role not only in defining selectivity for dopamine but also in preventing many phenolic xenobiotics from binding to the enzyme.  相似文献   
133.
134.
The plant hormone auxin (indole-3-acetic acid, IAA) is involved in the control of many phenomena during plant development. By characterizing steady-state free and conjugated IAA levels using a stable isotope dilution method coupled with gas chromatography- selected ion monitoring- mass spectrometry, this paper provides a detailed characterization of IAA metabolism in five liverworts, four mosses, and two tracheophytes. Long-term IAA conjugation patterns were monitored by incubating actively growing tissue with (14)C-IAA and then analyzing the de novo synthesis of IAA conjugates with radioimaging techniques. The liverworts, mosses, and tracheophytes can be differentiated by the total amount of IAA metabolites, the proportion of free and conjugated IAA, the chemical nature of their IAA conjugates, and the rates of IAA conjugation. Our tentative conclusion is that the liverworts appear to employ a biosynthesis-degradation strategy for the regulation of free IAA levels, in contrast to the conjugation-hydrolysis strategy apparently used by the mosses and tracheophytes. Such alternative metabolic strategies may have profound implications for macroevolutionary processes in these plant groups.  相似文献   
135.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   
136.
The human nuclear gene for the catalytic subunit of mitochondrial DNA polymerase (POLG) contains within its coding region a CAG microsatellite encoding a polyglutamine repeat. Previous studies demonstrated an association between length variation at this repeat and male infertility, suggesting a mechanism whereby the prevalent (CAG)10 allele, which occurs at a frequency of >80% in different populations, could be maintained by selection. Sequence analysis of the POLG CAG microsatellite region of more than 1000 human chromosomes reveals that virtually all allelic variation at the locus is accounted for by length variation of the CAG repeat. Analysis of POLG from African great apes shows that a prevalent length allele is present in each species, although its exact length is species-specific. In common chimpanzee (Pan troglodytes) a number of different sequence variants contribute to the prevalent length allele, strongly supporting the idea that the length of the POLG microsatellite region, rather than its exact nucleotide or amino acid sequence, is what is maintained. Analysis of POLG in other primates indicates that the repeat has expanded from a shorter, glutamine-rich sequence, present in the common ancestor of Old and New World monkeys.  相似文献   
137.
Two economically important characters, starch content and cassava bacterial blight resistance, were targeted to generate a large collection of cassava ESTs. Two libraries were constructed from cassava root tissues of varieties with high and low starch contents. Other libraries were constructed from plant tissues challenged by the pathogen Xanthomonas axonopodis pv.manihotis. We report here the single pass sequencing of 11 954 cDNA clones from the 5’ ends, including 111 from the 3’ ends. Cluster analysis permitted the identification of a unigene set of 5700 sequences. Sequence analyses permitted the assignment of a putative functional category for 37% of sequences whereas ~ 16% sequences did not show any significant similarity with other proteins present in the database and therefore can be considered as cassava specific genes. A group of genes belonging to a large multigene family was identified. We characterize a set of genes detected only in infected libraries putatively involved in the defense response to pathogen infection. By comparing two libraries obtained from cultivars contrasting in their starch content a group of genes associated to starch biosynthesis and differentially expressed was identified. This is the first large cassava EST resource developed today and publicly available thus making a significant contribution to genomic knowledge of cassava.  相似文献   
138.
Biotelemetry: a mechanistic approach to ecology   总被引:1,自引:0,他引:1  
Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.  相似文献   
139.
The systematically 'handed', or directionally asymmetrical way in which the major viscera are packed within the vertebrate body is known as situs. Other less obvious vertebrate lateralisations concern cognitive neural function, and include the human phenomena of hand-use preference and language-associated cognitive partitioning. An overview, rather than an exhaustive scholarly review, is given of recent advances in molecular understanding of the mechanism that ensures normal development of 'correct' situs. While the asymmetry itself and its left/right direction are clearly vertebrate-conserved characters, data available from various embryo types are compared in order to assess the likelihood that the developmental mechanism is evolutionarily conserved in its entirety. A conserved post-gastrular 'phylotypic' stage, with left- and right-specific cascades of key, orthologous gene expressions, clearly exists. It now seems probable that earlier steps, in which symmetry-breaking information is reliably transduced to trigger these cascades on the correct sides, are also conserved at depth although it remains unclear exactly how these steps operate. Earlier data indicated that the initiation of symmetry-breaking had been transformed, among the different vertebrate classes, as drastically as has the anatomy of pre-gastrular development itself, but it now seems more likely that this apparent diversity is deceptive. Ideas concerning the functional advantages to the vertebrate lifestyle of a systematically asymmetrical visceral packing arrangement, while untestable, are accepted because they form a plausible adaptationist 'just-so' story. Nevertheless, two contrasting beliefs are possible about the evolutionary origins of situs. Major recent advances in analysis of its developmental mechanism are largely due not to zoologists, comparative anatomists or evolutionary systematists, but to molecular geneticists, and these workers have generally assumed that the asymmetry is an evolutionary novelty imposed on a true bilateral symmetry, at or close to the origin of the vertebrate clade. A major purpose of this review is to advocate an alternative view, on the grounds of comparative anatomy and molecular systematics together with the comparative study of expressions of orthologous genes in different forms. This view is that situs represents a co-optation of a pre-existing, evolutionarily ancient non-bilaterality of the adult form in a vertebrate ancestor. Viewed this way, vertebrate or chordate origins are best understood as the novel imposition of an adaptively bilateral locomotory-skeletal-neural system, around a retained non-symmetrical 'visceral' animal. One component of neuro-anatomical asymmetry, the habenular/parapineal one that originates in the diencephalon, has recently been found (in teleosts) to be initiated from the same 'phylotypic' gene cascade that controls situs development. But the function of this particular diencephalic asymmetry is currently unclear. Other left-right partitionings of brain function, including the much more recently evolved, cerebral cortically located one associated with human language and hand-use, may be controlled entirely separately from situs even though their directionality has a particular relation to it in a majority of individuals. Finally, possible relationships are discussed between the vertebrate directional asymmetries and those that occur sporadically among protostome bilaterian forms. These may have very different evolutionary and molecular bases, such that there may have been constraints, in protostome evolution, upon any exploitation of left and right for complex organismic, and particularly cognitive neural function.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号