首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   65篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2021年   13篇
  2020年   9篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   15篇
  2015年   41篇
  2014年   39篇
  2013年   58篇
  2012年   76篇
  2011年   65篇
  2010年   40篇
  2009年   37篇
  2008年   54篇
  2007年   52篇
  2006年   51篇
  2005年   45篇
  2004年   41篇
  2003年   35篇
  2002年   33篇
  2001年   9篇
  2000年   4篇
  1999年   11篇
  1998年   10篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1990年   4篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有837条查询结果,搜索用时 32 毫秒
141.
The rainbow smelt (Osmerus mordax) is freeze-resistant and maintains swimming and feeding activity during winter. In order to identify genes differentially expressed in smelt liver response to winter water temperatures, a large-scale analysis of gene expression using suppression subtractive hybridization was carried out using samples obtained in fall and winter. Forward and reverse subtractions were performed, subtraction-enriched products were cloned, and clones were sequenced from both of the resulting libraries. When 27 of these genes were screened by semi-quantitative RT-PCR to identify candidates for differential expression based generally on 2-fold changes in expression, one encoding FK506-binding protein 5 was classified as up-regulated in response to seasonal change, another encoding the mitochondrial solute carrier 25 member 25 (ATP-Mg/Pi carrier) was similarly classified with seasonal change and low temperature shift, and the one encoding the 78 kDa glucose-regulated protein was provisionally classified as down-regulated with low temperature shift. Analysis of fall (warm) and winter (cold) seasonal samples by quantitative PCR (qPCR) revealed significant up-regulation of genes encoding FK506-binding protein 51 and the mitochondrial solute carrier, whereas the gene encoding the glucose-regulated protein showed no significant change in expression. The mitochondrial solute carrier and FK506-binding protein results may relate to changes in cortisol action, as both are regulated by cortisol in other species.  相似文献   
142.
Abstract 1 Chemical analyses of solvent extracts of pheromone glands of female western yellowstriped armyworm moths Spodoptera praefica (Grote) indicated the presence of (Z)‐7‐dodecenol (Z)‐7‐dodecenyl acetate (Z)‐9‐dodecenyl acetate (Z)‐9‐tetradecenyl acetate and (Z)‐11‐hexadecenyl acetate. 2 In field tests of combinations of these chemicals, small numbers of male S. praefica were captured in traps baited with (Z)‐7‐dodecenyl acetate. Numbers of males captured in traps were greatly increased in response to blends that included both (Z)‐7‐dodecenyl acetate with either (Z)‐9‐tetradecenyl acetate (Z)‐9‐dodecenyl acetate. The combination of (Z)‐7‐dodecenyl acetate and (Z)‐9‐tetradecenyl acetate provided the strongest sex attractant for use in trapping male S. praefica. 3 Males of the cabbage looper Trichoplusia ni (Hübner) were captured in traps baited with blends possessing (Z)‐7‐dodecenyl acetate, and were greatly reduced in traps baited with blends that included (Z)‐7‐dodecenol. 4 Multi‐component blends that included (Z)‐7‐dodecenol attracted males of the alfalfa looper Autographa californica (Speyer). 5 Males of Peridroma saucia (Hübner) and Mamestra configurata Walker were captured in traps that included (Z)‐9‐tetradecenyl acetate with (Z)‐11‐hexadecenyl acetate. 6 These responses by other species of moths to S. praefica pheromone components and blends may still complicate the use of any lure for S. praefica.  相似文献   
143.
The sarcoglycans are known as an integral subcomplex of the dystrophin glycoprotein complex, the function of which is best characterized in skeletal muscle in relation to muscular dystrophies. Here we demonstrate that the white adipocytes, which share a common precursor with the myocytes, express a cell-specific sarcoglycan complex containing β-, δ-, and ϵ-sarcoglycan. In addition, the adipose sarcoglycan complex associates with sarcospan and laminin binding dystroglycan. Using multiple sarcoglycan null mouse models, we show that loss of α-sarcoglycan has no consequence on the expression of the adipocyte sarcoglycan complex. However, loss of β- or δ-sarcoglycan leads to a concomitant loss of the sarcoglycan complex as well as sarcospan and a dramatic reduction in dystroglycan in adipocytes. We further demonstrate that β-sarcoglycan null mice, which lack the sarcoglycan complex in adipose tissue and skeletal muscle, are glucose-intolerant and exhibit whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscles. Thus, our data demonstrate a novel function of the sarcoglycan complex in whole body glucose homeostasis and skeletal muscle metabolism, suggesting that the impairment of the skeletal muscle metabolism influences the pathogenesis of muscular dystrophy.Muscle fat infiltration is recognized as a hallmark pathological feature in dystrophin glycoprotein complex (DGC)3-related muscular dystrophies (1) that include dystrophinopathies (2, 3) and sarcoglycanopathies (LGMD2C-F) (4). In agreement, magnetic resonance imaging measurements of fat infiltration allow accurate assessments of disease severity in Duchenne muscular dystrophy patients (3). Association of adipose tissue development with degenerative/regenerative or atrophic changes in skeletal muscle is also supported by the finding that adipogenesis-competent cells within the skeletal muscle are activated during muscle regeneration (5). However, the molecular mechanism(s) underlying muscle fatty metamorphosis remain unclear.Ectopic fat deposition in skeletal muscles is primarily described in animals and humans with lipodystrophy and sarcopenia. In these conditions, the accumulation of lipids and adipocytes in skeletal muscle is often accompanied by hyperglycemia and insulin resistance (611), both of which are strong indicators of muscle metabolic defects (12, 13) and deregulated adipogenesis (14). Furthermore, both adipose-derived and muscle-derived stem cells differentiate into adipocytes upon exposure to high levels of glucose (15), linking impaired muscle metabolism with muscle fat deposition.It is long held that the biogenesis of a basement membrane takes place in the earliest steps of adipogenesis and that extensive extracellular matrix (ECM) remodeling occurs throughout adipogenesis (16, 17). The concept that cell surface receptors play a role in the regulation of adipogenesis and thus may underlie metabolic disorders just recently emerged with a study of the integrin complexes (18). Given that the DGC in its capacity as an ECM receptor is critical for muscle integrity (19, 20) and that white adipocytes and skeletal muscle cells originate from the same mesenchymal precursor cells (21, 22), we set out to determine whether components of the skeletal muscle DGC are expressed in white adipocytes. Herein, we describe a unique adipose sarcoglycan (SG) complex that includes β-, δ-, and ϵ-SG. This complex is tightly associated with sarcospan (Sspn) and dystroglycan (DG). Moreover, we show that DG functions as a novel ECM receptor in white adipocytes. Because adipose tissue and skeletal muscle play critical roles in the maintenance of normal glucose homeostasis and whole body insulin sensitivity (23), we examined the metabolic consequences of the SG complex disruption in both adipose tissue and skeletal muscle. Using in vivo approaches, we observed that the β-SG null mouse (24), a mouse model of muscular dystrophy, is glucose-intolerant and exhibits whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscle.  相似文献   
144.
Lowland savannas are a rare variant of Midwestern United States savanna occurring on alluvial soils, for which reference information is sparse. To evaluate the appropriateness of using upland savanna as a surrogate source of reference information for lowland savanna, we studied a pre‐Euro‐American lowland savanna using original U.S. Public Land Survey data and other historical records. Historical vegetation was reconstructed and compared among upland savannas, lowland savannas, and lowland forests; we also evaluated potential disturbance dynamics maintaining these systems. We found that all three communities were dominated by members of the genus Quercus but also had extensive representation by many other tree species, especially notable for savannas in this region. There were no clear size–density relationships for species in the genus Quercus, indicating that these historical savannas were not characterized exclusively by large, scattered oak trees but rather by trees of many oak species and nonoak species in a wide range of size classes. Both upland and lowland savannas also contained a substantial shrub component. We found no evidence that lowland savannas were maintained by flooding, although the uneven‐aged canopy structure suggested that periodic disturbance occurred. Restoration of lowland savanna in this region should include provisions for maintaining nonoak species and shrubs, with disturbance timed to maintain an uneven‐aged canopy structure. Although the appropriateness of historical data in the face of climate change may be questionable, in this region, a warmer climate may actually help promote the “oak parkland” that was present from 8,000 BP up to Euro‐American settlement.  相似文献   
145.
Animal models are commonly used to test the efficacy of impact loading regimens on bone strength. We designed an inexpensive force platform to concurrently measure the separate peak vertical impact forces produced by the fore and hindfeet of immature F-344 rats when dropped onto the platform. The force platform consisted of three load cells placed in a triangular pattern under a flat plate. Rats were dropped from heights of 30, 45 and 60 cm onto the platform so that they landed on all four feet concurrently. The peak vertical impact forces produced by the feet of the rats were measured using a sampling frequency of 100 kHz. The location of each foot at landing relative to the load cells, and the force received by each load cell were combined in a series of static equations to solve for the vertical impact forces produced by the fore and hindfeet. The forces produced by feet when rats stood on the single platform were similarly determined. The forces exerted separately by the fore and hindfeet of young rats when landing on the plate as a ratio to standing forces were then calculated. Rats when standing bore more weight on their hindfeet but landed with more weight on their forefeet, which provides rationale for the greater response to landing forces of bones in the forelimbs than those in the hindlimbs. This system provided a useful method to simultaneously measure peak vertical impact forces in fore and hindfeet in rats.  相似文献   
146.
147.
Intracellular Ca2+ mobilization plays an important role in a wide variety of cellular processes, and multiple second messengers are responsible for mediating intracellular Ca2+ changes. Here we explored the role of one endogenous Ca2+-mobilizing nucleotide, cyclic adenosine diphosphoribose (cADPR), in the proliferation and differentiation of neurosecretory PC12 cells. We found that cADPR induced Ca2+ release in PC12 cells and that CD38 is the main ADP-ribosyl cyclase responsible for the acetylcholine (ACh)-induced cADPR production in PC12 cells. In addition, the CD38/cADPR signaling pathway is shown to be required for the ACh-induced Ca2+ increase and cell proliferation. Inhibition of the pathway, on the other hand, accelerated nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells. Conversely, overexpression of CD38 increased cell proliferation but delayed NGF-induced differentiation. Our data indicate that cADPR plays a dichotomic role in regulating proliferation and neuronal differentiation of PC12 cells.Mobilization of intracellular Ca2+ stores is involved in diverse cell functions, including fertilization, cell proliferation, and differentiation (14). At least three endogenous Ca2+-mobilizing messengers have been identified, including inositol trisphosphate (IP3),3 nicotinic adenine acid dinucleotide phosphate (NAADP), and cyclic adenosine diphosphoribose (cADPR). Similar to IP3, cADPR can mobilize calcium release in a wide variety of cell types and species, from protozoa to animals. The cADPR-mediated Ca2+ signaling has been indicated in a variety of cellular processes (57), from abscisic acid signaling and regulation of the circadian clock in plants, to mediating long-term synaptic depression in hippocampus.Ample evidence shows that the ryanodine receptors are the main intracellular targets for cADPR (1, 2, 8). Ryanodine receptors (RyRs) are intracellular Ca2+ channels widely expressed in various cells and tissues, including muscles and neurons. It is the major cellular mediator of Ca2+-induced Ca2+ release (CICR) in cells. There are three isoforms of ryanodine receptors: RyR1, RyR2, and RyR3, all of which have been implicated in the cADPR signaling (1, 2, 8). However, evidence regarding cADPR acting directly on the receptors is lacking (9). It has been suggested that accessory proteins, such as calmodulin and FK506-binding protein (FKBP), may be involved instead (1015).cADPR is formed from nicotinamide adenine dinucleotide (NAD) by ADP-ribosyl cyclases. Six ADP-ribosyl cyclases have been identified so far: Aplysia ADP-ribosyl cyclase, three sea urchin homologues (16, 17), and two mammalian homologues, CD38 and CD157 (18). CD38 is a membrane-bound protein and the main mammalian ADP-ribosyl cyclase. As a novel multifunctional enzyme, CD38 catalyzes the synthesis and hydrolysis of both cADPR and NAADP, two structurally and functionally distinct Ca2+ messengers. Virtually all mammalian tissues ever examined have been shown to express CD38. CD38 knock-out mice exhibit multiple physiological defects, ranging from impaired immune responses, metabolic disturbances, to behavioral modifications (1, 6, 18).CD38 was originally identified as a lymphocyte differentiation antigen (18). Indeed, CD38/cADPR has been linked to cell differentiation (5). For example, in human HL-60 cells, CD38 expression and the consequential accumulation of cADPR play a causal role in mediating granulocytic differentiation (19). In addition, expression of CD38 in HeLa and 3T3 cells not only increased intracellular Ca2+ concentration but also induced cell proliferation by significantly reducing the S phase duration, leading to shortened cell doubling time (20). The ability of cADPR to increase cell proliferation has also been observed in human T cells (21), human hemopoietic progenitors (22), human peripheral blood mononuclear cells (23), human mesenchymal stem cells (24), and murine mesangial cells (25).The PC12 cell line was derived from rat adrenal medulla and has been used extensively as a neuronal model, since it exhibits many of the functions observed in primary neuronal cultures (26). Most importantly, PC12 cells can be induced by nerve growth factor (NGF) to differentiate into cells with extensive neurite outgrowths, resembling neuronal dendritic trees (26, 27). In contrast to NGF, numerous growth factors and neurotransmitters can induce the proliferation of PC12 cells instead (26). Both IP3 receptor- and ryanodine receptor-mediated Ca2+ stores have been shown to be present in PC12 cells (2831). The type 2 ryanodine receptor is expressed in PC12 cells and activation of the NO/cGMP pathway in PC12 cells results in calcium mobilization, which is mediated by cADPR and similar to that seen in sea urchin eggs (32). It has been demonstrated that NAADP, another Ca2+-mobilizing messenger, is also a potent neuronal differentiation inducer in PC12 cells, while IP3 exhibits no such role (33, 34). Whether cADPR is involved in the proliferation and differentiation of PC12 cells is unknown.Here we show that activation of the CD38/cADPR/Ca2+ signaling is required for the ACh-induced proliferation in PC12 cells, while inhibition of the pathway accelerates NGF-induced neuronal differentiation. Our data indicate that cADPR is important in regulating cell proliferation and neuronal differentiation in PC12 cells.  相似文献   
148.
The distribution of archaeal amoA and 16S rRNA genes was evaluated in two marine-derived, meromictic lakes in the Canadian High Arctic: Lake A and Lake C1 on the northern coast of Ellesmere Island. The amoA gene was recorded in both lakes, with highest copy numbers in the oxycline. Sequence analysis showed that amoA from the two lakes shared 94% similarity, indicating at least two phylogenetically distinct clusters. Clone libraries of archaeal 16S rRNA genes from Lake A revealed strong vertical differences in archaeal community diversity and composition down the water column. The oxic layer was dominated by one group of Euryarchaeota affiliated to the Lake Dagow Sediment (LDS) cluster. This group was absent from the oxycline, which had an extremely low archaeal diversity of two phylotypes. Both belonged to the Crenarchaeota Marine Group I (MGI), the marine group that has been linked to archaeal amoA ; however, there was a low ratio of amoA to MGI copy numbers, suggesting that many MGI Archaea did not carry the amoA gene. The anoxic zone contained representatives of the RC-V (Rice Cluster-V) and LDS clusters of Euryarchaeota. These results show the strong vertical differentiation of archaeal communities in polar meromictic lakes, and they suggest archaeal nitrification within the oxycline of these highly stratified waters.  相似文献   
149.

Background  

Only a minority of patients with advanced non-small cell lung cancer (NSCLC) benefit from chemotherapy. Serum peptide profiling of NSCLC patients was performed to investigate patterns associated with treatment outcome.  相似文献   
150.
Circadian rhythms impact a variety of behavioral and physiological functions contributing to longevity and successful reproduction. In their natural environments, individuals of a species are faced with a multitude of challenges and the coordination of internal processes and behavior with external pressures has been hypothesized to be an important target of natural selection. Several lines of evidence from cyanobacteria, Drosophila, and plants provide strong support for an important role of the circadian clock in survival and reproductive success. Similarly in mammals, disruptions in circadian function markedly impact reproduction and lifespan. The present review discusses research outlining the proximate and ultimate mechanisms responsible for the central and peripheral control of the reproductive axis. Because precise temporal coordination of the endocrine system is particularly crucial for reproduction by females, the present overview focuses on the role of circadian timing in this sex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号