首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   33篇
  2023年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   18篇
  2015年   29篇
  2014年   19篇
  2013年   22篇
  2012年   37篇
  2011年   44篇
  2010年   25篇
  2009年   17篇
  2008年   40篇
  2007年   34篇
  2006年   37篇
  2005年   36篇
  2004年   45篇
  2003年   41篇
  2002年   38篇
  2001年   10篇
  2000年   11篇
  1999年   10篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   18篇
  1994年   8篇
  1993年   8篇
  1992年   16篇
  1991年   6篇
  1990年   14篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1985年   3篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1972年   4篇
  1968年   2篇
排序方式: 共有742条查询结果,搜索用时 109 毫秒
61.
The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes.  相似文献   
62.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   
63.
A number of ophiostomatoid fungi were isolated from the spruce-infesting bark beetle, Ips perturbatus and its galleries collected from felled spruce trees and logs in northern BC and the Yukon Territory. Isolates were identified to species using morphological characteristics, nuclear ribosomal DNA and partial β-tubulin gene sequences. Thirteen morphological and phylogenetic species were identified among the isolates. Leptographium fruticetum, Leptographium abietinum, Ophiostoma bicolor, Ophiostoma manitobense, O. piceaperdum, and eight undescribed species of the genus Ophiostoma and the anamorph genera Leptographium, Hyalorhinocladiella, Ambrosiella and Graphium. A number of these species, i.e. L. fruticetum, Hyalorhinocladiella sp. 2, O. bicolor and O. manitobense, were isolated repeatedly from I. perturbatus, while others, i.e. Graphium sp. 1 and O. piceaperdum, seemed to be␣sporadic associates. Among all the isolates, L. fruticetum had the highest relative dominance in this survey. A high frequency of occurrence of this species with the beetle may indicate a specific relationship between the two partners.  相似文献   
64.
Chronic hyperglycemia, usually assessed from HbA1c determinations, results in excessive glycation and generation of oxidative stress. As a consequence, chronic hyperglycemia has been identified as a risk factor for diabetes complications leading to accelerated atherosclerosis. Both fasting and postprandial hyperglycemia contribute to this process. However the acute glucose fluctuations that occur in diabetes have been recently described as an additional factor that activates the oxidative stress. As a consequence, acute glucose swings, including upward (postprandial) and downward (interprandial) fluctuations can be considered as risk factors for cardiovascular events and should be included in the "dysglycemia" of diabetes in combination with fasting and postprandial hyperglycemia. As postprandial glucose is a contributor of both acute glucose fluctuations and chronic sustained hyperglycemia, it remains difficult to know whether these 2 mechanisms are equivalent or not equivalent risk factors for cardiovascular disease.  相似文献   
65.
Skeletal muscle has the ability to achieve rapid repair in response to injury or disease. Many individuals with Marfan syndrome (MFS), caused by a deficiency of extracellular fibrillin-1, exhibit myopathy and often are unable to increase muscle mass despite physical exercise. Evidence suggests that selected manifestations of MFS reflect excessive signaling by transforming growth factor (TGF)-beta (refs. 2,3). TGF-beta is a known inhibitor of terminal differentiation of cultured myoblasts; however, the functional contribution of TGF-beta signaling to disease pathogenesis in various inherited myopathic states in vivo remains unknown. Here we show that increased TGF-beta activity leads to failed muscle regeneration in fibrillin-1-deficient mice. Systemic antagonism of TGF-beta through administration of TGF-beta-neutralizing antibody or the angiotensin II type 1 receptor blocker losartan normalizes muscle architecture, repair and function in vivo. Moreover, we show TGF-beta-induced failure of muscle regeneration and a similar therapeutic response in a dystrophin-deficient mouse model of Duchenne muscular dystrophy.  相似文献   
66.
67.
Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life. This neurogenesis occurs in the main integrative centers of the insect brain, the mushroom bodies (MBs), where the neuroblasts responsible for their formation persist after the imaginal molt. The rate of production of new neurons is controlled not only by internal cues such as morphogenetic hormones but also by external environmental cues. Adult crickets reared in an enriched sensory environment experienced an increase in neuroblast proliferation as compared with crickets reared in an impoverished environment. In addition, unilateral sensory deprivation led to reduced neurogenesis in the MB ipsilateral to the lesion. In search of a functional role for the new cells, we specifically ablated MB neuroblasts in young adults using brain-focused gamma ray irradiation. We developed a learning paradigm adapted to the cricket, which we call the "escape paradigm." Using this operant associative learning test, we showed that crickets lacking neurogenesis exhibited delayed learning and reduced memory retention of the task when olfactory cues were used. Our results suggest that environmental cues are able to influence adult neurogenesis and that, in turn, newly generated neurons participate in olfactory integration, optimizing learning abilities of the animal, and thus its adaptation to its environment. Nevertheless, odor learning in adult insects cannot always be attributed to newly born neurons because neurogenesis is completed earlier in development in many insect species. In addition, many of the irradiated crickets performed significantly better than chance on the operant learning task.  相似文献   
68.
69.
Because endocrine mechanisms are thought to mediate behavioral responses to changes in the environment, examining these mechanisms is essential for understanding how long-lived seabirds adjust their foraging decisions to contrasting environmental conditions in order to maximize their fitness. In this context, the hormone corticosterone (CORT) deserves specific attention because of its major connections with locomotor activities. We examined for the first time the relationships between individual CORT levels and measurements of foraging success and behavior using satellite tracking and blood sampling from wandering albatrosses (Diomedea exulans) before (pretrip CORT levels) and after (posttrip CORT levels) foraging trips during the incubation period. Plasma CORT levels decreased after a foraging trip, and the level of posttrip CORT was negatively correlated with individual foraging success, calculated as total mass gain over a foraging trip. Pretrip CORT levels were not linked to time spent at sea but were positively correlated with daily distance traveled and maximum range at sea. In this study, we were able to highlight the sensitivity of CORT levels to variation in energy intake, and we showed for the first time that individual CORT levels can be explained by variation in foraging success. Relationships between pretrip CORT levels and daily distance traveled and maximum range were independent of pretrip body mass, suggesting that slight elevations in pretrip CORT levels might facilitate locomotor activity. However, because both foraging behavior and pretrip CORT levels could be affected by individual quality, future experimental studies including manipulation of CORT levels are needed to test whether CORT can mediate foraging decisions according to foraging conditions.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号