首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   730篇
  免费   35篇
  2023年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   18篇
  2015年   29篇
  2014年   19篇
  2013年   23篇
  2012年   36篇
  2011年   45篇
  2010年   25篇
  2009年   17篇
  2008年   41篇
  2007年   34篇
  2006年   38篇
  2005年   36篇
  2004年   48篇
  2003年   42篇
  2002年   40篇
  2001年   10篇
  2000年   11篇
  1999年   11篇
  1998年   13篇
  1997年   8篇
  1996年   9篇
  1995年   18篇
  1994年   8篇
  1993年   8篇
  1992年   16篇
  1991年   6篇
  1990年   14篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1985年   3篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   4篇
  1977年   8篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
  1972年   4篇
  1968年   3篇
排序方式: 共有765条查询结果,搜索用时 15 毫秒
101.
Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.  相似文献   
102.
Motility assessment before birth can be used to evaluate the integrity of the nervous system. Sideways bending (SB) of head and/or rump, the earliest embryonic motility in both humans and guinea pigs, can be visualized sonographically. We know from other species that early embryonic motility is cyclic. This study explores the distribution of SB-to-SB intervals in human and guinea pig embryos before the appearance of more complex movements such as general movements. We hypothesized that the activity in both species is cyclic. We made 15-min sonographic recordings of SBs between 5 weeks and 0 days (5wk0d) and 7wk0d conceptional age (CA) in 18 human embryos of uncomplicated IVF pregnancies (term 38 weeks) and in 20 guinea pig embryos between 3wk4d and 4wk0d CA (term 9 weeks). SB-to-SB interval durations were categorized as long (≥10 s) or short (<10 s) intervals. For human embryos, the median values for long and short intervals were 61 s (range, 10-165 s) and 3 s (range, 1-9 s) respectively; for guinea pigs 38 s (range, 10-288 s) and 5 s (range, 1-9 s), respectively. During development, the duration of long intervals decreased while the number of short intervals increased for both species. The earliest embryonic motility in the human and guinea pig is performed cyclically with distinct developmental milestones. The resemblance of their interval development offers promising possibilities to use the guinea pig as a noninvasive animal model of external influences on motor and neural development.  相似文献   
103.

Background

The aim of the present study was to assess the risk of having a traffic accident after using alcohol, single drugs, or a combination, and to determine the concentrations at which this risk is significantly increased.

Methods

A population-based case-control study was carried out, collecting whole blood samples of both cases and controls, in which a number of drugs were detected. The risk of having an accident when under the influence of drugs was estimated using logistic regression adjusting for gender, age and time period of accident (cases)/sampling (controls). The main outcome measures were odds ratio (OR) for accident risk associated with single and multiple drug use. In total, 337 cases (negative: 176; positive: 161) and 2726 controls (negative: 2425; positive: 301) were included in the study.

Results

Main findings were that 1) alcohol in general (all the concentrations together) caused an elevated crash risk; 2) cannabis in general also caused an increase in accident risk; at a cut-off of 2 ng/mL THC the risk of having an accident was four times the risk associated with the lowest THC concentrations; 3) when ranking the adjusted OR from lowest to highest risk, alcohol alone or in combination with other drugs was related to a very elevated crash risk, with the highest risk for stimulants combined with sedatives.

Conclusion

The study demonstrated a concentration-dependent crash risk for THC positive drivers. Alcohol and alcohol-drug combinations are by far the most prevalent substances in drivers and subsequently pose the largest risk in traffic, both in terms of risk and scope.  相似文献   
104.
A key point in the study of acoustic perception is whether brain responsiveness to sounds depends on sound acoustic structure or sound perceptive salience. Songbirds provide some evidence that higher auditory regions are sensitive to the subjective importance of the stimulus for the subject. In the present paper, we compare brain activation elicited by mate versus non-mate calls in female zebra finches Taeniopygia guttata. Using playback, we examined the responsiveness of the caudal telencephalon by measuring the evoked expression of the immediate early gene ZENK. Our results show that mate calls elicit a significantly higher ZENK expression than the calls of another male in hippocampus, but not in auditory areas. Using a hierarchical ascending classification, we show that this difference in brain activation is not explained by call acoustic structure, but relies on call identity. Thus, these results give evidence for a genomic response to calls in hippocampus that differentiate between call identity, and not between call structure. Our study gives further insight into the implication of the hippocampus in sound recognition in female songbirds.  相似文献   
105.
Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer's disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer's disease.  相似文献   
106.
107.
Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial d-fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the d-fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. S. Foley and E. Stolarczyk contributed equally to this work  相似文献   
108.
Our knowledge of heredity has recently undergone major upheaval. Heredity transmits considerably more than just genetic elements. First, the oocyte is full of maternal cytoplasmic components that subsequently are present in each new cell. Second, maternal cells can pass to the progeny, where they remain active into adult life (microchimerism). Here, we examine the notion that the transmission of characters involves at least two processes in addition to that of mendelian heredity, long considered to be the only hereditary mechanism. These processes all involve epigenetic processes, including the transmission of macromolecules, subcellular organelles, and living cells solely from the mother to her offspring, whether female or male, during pregnancy and lactation. We postulate that cytoplasmic heredity and maternal transmission of cells leading to a long-term state of microchimerism in progeny are two good examples of matrilineal, nonmendelian heredity. A mother's important contribution to the development and health of her progeny seems to possess many uncharted depths.  相似文献   
109.
Heat-shock factor 1 (HSF1) protects cells and organisms against various types of stress, either by triggering a complex response that promotes cell survival or by triggering cell death when stress-induced alterations cannot be rescued. Although this dual role of HSF1 was observed in spermatogenesis exposed to heat shock or proteotoxic stress, HSF1 was also reported to contribute to cell resistance against genotoxic stress, such as that caused by doxorubicin, an anticancer drug in common clinical use. To better understand the stress/cell-dependent functions of HSF1, we used wild-type and Hsf1(tm1Ijb)/Hsf1(tm1Ijb) males to determine the role of HSF1 in the genotoxic stress response elicited in spermatogenic cells. Within 2 days after a single intraperitoneal injection of doxorubicin (DOXO; 5 mg/kg), proliferation of Hsf1+/+ but not Hsf1-/- spermatogenic cells was significantly reduced, whereas cell death was increased in mitotic germ cells and metaphase I spermatocytes. By 21 days, meiotic cells were depleted in all treated Hsf1+/+ testes but not in Hsf1-/- ones. Nevertheless, after 3 mo, spermatogenesis showed better signs of recovery in Hsf1+/+ than in Hsf1-/- males. Taken together, these data indicate that acute response to genotoxic stress in the testis involves HSF1-dependent mechanisms that induce apoptotic cell death in a TRP53-independent manner, but also intervene on a longer term to restore seminiferous tubules.  相似文献   
110.
The age-related impairment of endothelium-dependent vasodilatation contributes to increased cardiovascular risk in the elderly. For primary and secondary prevention, aspirin can reduce the incidence of cardiovascular events in this patient population. The present work evaluated the effect of low-dose aspirin on age-related endothelial dysfunction in C57B/J6 aging mice and investigated its protective antioxidative effect. Age-related endothelial dysfunction was assessed by the response to acetylcholine of phenylephrine-induced precontracted aortic segments isolated from 12-, 36-, 60-, and 84-wk-old mice. The effect of low-dose aspirin was examined in mice presenting a decrease in endothelial-dependent relaxation (EDR). The effects of age and aspirin treatment on structural changes were determined in mouse aortic sections. The effect of aspirin on the oxidative stress markers malondialdehyde and 8-hydroxy-2'-deoxyguanosine (8-OhdG) was also quantified. Compared with that of 12-wk-old mice, the EDR was significantly reduced in 60- and 84-wk-old mice (P < 0.05); 68-wk-old mice treated with aspirin displayed a higher EDR compared with control mice of the same age (83.9 +/- 4 vs. 66.3 +/- 5%; P < 0.05). Aspirin treatment decreased 8-OHdG levels (P < 0.05), but no significant effect on intima/media thickness ratio was observed. The protective effect of aspirin was not observed when treatment was initiated in older mice (96 wk of age). It was found that low-dose aspirin is able to prevent age-related endothelial dysfunction in aging mice. However, the absence of this effect in the older age groups demonstrates that treatment should be initiated early on. The underlying mechanism may involve the protective effect of aspirin against oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号