首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   13篇
  2023年   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1976年   10篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   3篇
  1969年   2篇
  1966年   3篇
  1965年   1篇
  1931年   1篇
排序方式: 共有115条查询结果,搜索用时 54 毫秒
31.
The cell wall of bacteria induces proinflammatory cytokines in monocytes and neutrophils in human blood. The nature of the stimulating component of bacterial cell walls is not well understood. We have previously shown polymeric peptidoglycan (PGN) has this activity, and the cytokine response requires PGN internalization and trafficking to lysosomes. In this study, we demonstrate that peptidoglycan monomers such as muramyl dipeptide and soluble peptidoglycan fail to induce robust cytokine production in immune cells, although they activate the nucleotide-binding oligomerization domain proteins in transfected cell models. We further show that lysosomal extracts from immune cells degrade intact peptidoglycan into simpler products and that the lysosomal digestion products activate the nucleotide-binding oligomerization domain proteins. We conclude that naive innate immune cells recognize PGN in its polymeric form rather than monomers such as muramyl dipeptide and require PGN lysosomal hydrolysis to respond. These findings offer new opportunities in the treatment of sepsis, especially sepsis arising from Gram-positive organisms.  相似文献   
32.

Background

Digital polymerase chain reaction (dPCR) is an increasingly popular technology for detecting and quantifying target nucleic acids. Its advertised strength is high precision absolute quantification without needing reference curves. The standard data analytic approach follows a seemingly straightforward theoretical framework but ignores sources of variation in the data generating process. These stem from both technical and biological factors, where we distinguish features that are 1) hard-wired in the equipment, 2) user-dependent and 3) provided by manufacturers but may be adapted by the user. The impact of the corresponding variance components on the accuracy and precision of target concentration estimators presented in the literature is studied through simulation.

Results

We reveal how system-specific technical factors influence accuracy as well as precision of concentration estimates. We find that a well-chosen sample dilution level and modifiable settings such as the fluorescence cut-off for target copy detection have a substantial impact on reliability and can be adapted to the sample analysed in ways that matter. User-dependent technical variation, including pipette inaccuracy and specific sources of sample heterogeneity, leads to a steep increase in uncertainty of estimated concentrations. Users can discover this through replicate experiments and derived variance estimation. Finally, the detection performance can be improved by optimizing the fluorescence intensity cut point as suboptimal thresholds reduce the accuracy of concentration estimates considerably.

Conclusions

Like any other technology, dPCR is subject to variation induced by natural perturbations, systematic settings as well as user-dependent protocols. Corresponding uncertainty may be controlled with an adapted experimental design. Our findings point to modifiable key sources of uncertainty that form an important starting point for the development of guidelines on dPCR design and data analysis with correct precision bounds. Besides clever choices of sample dilution levels, experiment-specific tuning of machine settings can greatly improve results. Well-chosen data-driven fluorescence intensity thresholds in particular result in major improvements in target presence detection. We call on manufacturers to provide sufficiently detailed output data that allows users to maximize the potential of the method in their setting and obtain high precision and accuracy for their experiments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-283) contains supplementary material, which is available to authorized users.  相似文献   
33.
34.
35.
Recent experiments indicate an important role for Src family and Syk protein tyrosine kinases and phosphatidylinositol 3-kinase in the signal transduction process initiated by mouse receptors for IgG and leading to phagocytosis. Considerably less is known regarding signal transduction by the human-restricted IgG receptor, FcgammaRIIa. Furthermore, the relationship among the Src family, Syk, and phosphatidylinositol 3-kinase in phagocytosis is not understood. Here, we show that FcgammaRIIa is phosphorylated by an Src family member, which results in recruitment and concomitant activation of the distal enzymes Syk and phosphatidylinositol 3-kinase. Using a FcgammaRI-p85 receptor chimera cotransfected with kinase-inactive mutants of Syk or application of a pharmacological inhibitor of Syk, we show that Syk acts in parallel with phosphatidylinositol 3-kinase. Our results indicate that FcgammaRIIa-initiated monocyte or neutrophil phagocytosis proceeds from the clustered IgG receptor to Src to phosphatidylinositol 3-kinase and Syk.  相似文献   
36.
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.  相似文献   
37.
Snetselaar, K. M., Bolker, M., and Kahmann, R. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genetics and Biology 20, 299-312. When small drops of Ustilago maydis sporidia were placed 100-200 μm apart on agar surfaces and covered with paraffin oil, sporidia from one drop formed thin hyphae that grew in a zig-zag fashion toward the other drop if it contained sporidia making the appropriate pheromone. For example, a2b2 mating hyphae grew toward a1b1 and a1b2 mating hyphae, and the filaments eventually fused tip to tip. Time-lapse photography indicated that the mating hyphae can rapidly change orientation in response to nearby compatible sporidia. When exposed to pheromone produced by cells in an adjacent drop, haploid sporidia with the a2 allele began elongating before sporidia with the a1 allele. Sporidia without functional pheromone genes responded to pheromone although they did not induce a response, and sporidia without pheromone receptors induced formation of mating hyphae although they did not form mating hyphae. Diploid sporidia heterozygous at b but not at a formed straight, rigid, aerial filaments when exposed to pheromone produced by the appropriate haploid sporidia. Again, the a2a2b1b2 strain formed filaments more quickly than the a1a1b1b2 strain. Taken together, these results suggest that the a2 pheromone diffuses less readily or is degraded more quickly than the a1 pheromone.  相似文献   
38.
39.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   
40.
The ultrastructure and electrophysiological properties of neurons in the abdominal (visceral) ganglion of the marine opisthobranch gastropod Aplysia brasiliana have been investigated to determine whether this preparation compares favorably with the well studied A. californica for neurobiological research. In general, the topography, morphology and physiological characteristics, including synaptic connections, of neurons in this ganglion are quite similar to those of A. californica. There is close correspondence between the two animals in terms of each of the identified cells or neuronal clusters in the ganglion, including the presence of the cell L10 (interneuron I) in A. brasiliana which makes synaptic connections comparable with those in A. californica. New follower cells of this interneuron have been found in A. brasiliana. This species offers some advantages in that the connective tissue surrounding the ganglion is thinner and more transparent, making cell identification and penetration easier. A. brasiliana appears to exhibit the behaviors of A. californica that have been used in previous functional analyses of neural circuits. In addition, this species swims and exhibits a "burrowing" activity less commonly seen in A. californica. The rich repertoire of behaviors and accessibility of large identifiable and functionally interconnected neurons makes this species of Aplysia an excellent model preparation for future neurobiological studies. Similar, less thorough, investigations of the abdominal ganglion of A. dactylomela indicate that this species is also very similar to A. californica in terms of the identified cells in the abdominal ganglion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号