首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9304篇
  免费   700篇
  国内免费   2篇
  2024年   4篇
  2023年   46篇
  2022年   49篇
  2021年   217篇
  2020年   132篇
  2019年   173篇
  2018年   227篇
  2017年   189篇
  2016年   315篇
  2015年   502篇
  2014年   588篇
  2013年   688篇
  2012年   827篇
  2011年   848篇
  2010年   554篇
  2009年   428篇
  2008年   567篇
  2007年   576篇
  2006年   492篇
  2005年   507篇
  2004年   428篇
  2003年   407篇
  2002年   355篇
  2001年   91篇
  2000年   59篇
  1999年   87篇
  1998年   92篇
  1997年   66篇
  1996年   58篇
  1995年   60篇
  1994年   46篇
  1993年   42篇
  1992年   28篇
  1991年   29篇
  1990年   29篇
  1989年   21篇
  1988年   18篇
  1987年   15篇
  1986年   14篇
  1985年   12篇
  1984年   11篇
  1983年   18篇
  1982年   16篇
  1981年   11篇
  1980年   6篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 695 毫秒
991.
Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases.  相似文献   
992.
993.
Increases in extracellular potassium concentration ([K+]o), which can occur during neuronal activity and under pathological conditions such as ischemia, lead to a variety of potentially detrimental effects on neuronal function. Although astrocytes are known to contribute to the clearance of excess K+o, the mechanisms are not fully understood. We examined the potential role of mitochondria in sequestering K+ in astrocytes. Astrocytes were loaded with the fluorescent K+ indicator PBFI and release of K+ from mitochondria into the cytoplasm was examined after uncoupling the mitochondrial membrane potential with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Under the experimental conditions employed, transient applications of elevated [K+]o led to increases in K+ within mitochondria, as assessed by increases in the magnitudes of cytoplasmic [K+] ([K+]i) transients evoked by brief exposures to CCCP. When mitochondrial K+ sequestration was impaired by prolonged application of CCCP, there was a robust increase in [K+]i upon exposure to elevated [K+]o. Blockade of plasmalemmal K+ uptake routes by ouabain, Ba2+, or a mixture of voltage-activated K+ channel inhibitors reduced K+ uptake into mitochondria. Also, reductions in mitochondrial K+ uptake occurred in the presence of mito-KATP channel inhibitors. Rises in [K+]i evoked by brief applications of CCCP following exposure to high [K+]o were also reduced by gap junction blockers and in astrocytes isolated from connexin43-null mice, suggesting that connexins also play a role in K+ uptake into astrocyte mitochondria. We conclude that mitochondria play a key role in K+o handling by astrocytes.  相似文献   
994.
995.
In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate–dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21Cip1 accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage.  相似文献   
996.
997.
Shifting cultivators depend on forest biomass inputs to nourish their crops. For them, forest resilience has an immediate impact: it affects crop productivity. A decline in the rate of recovery following shifting cultivation would ultimately affect local, regional and global carbon budgets, with feedbacks to climate. Yet the long-term impacts of shifting cultivation have been quantified in only six locations. In this study, we reanalyze data from these locations to determine whether the rate of biomass recovery is the same from cycle to cycle. Further, using case studies in Southern Yucatan, Mexico and West Kalimantan, Indonesia, we investigate the ecological and socioeconomic factors that affect forest resilience and thus determine whether or not shifting cultivation is sustainable. The reanalysis links aboveground biomass recovery following shifting cultivation to site productivity, forest age, fallow length, history of cultivation, and soil texture. Across locations, biomass accumulation rate declines by 9.3 percent with each cycle of shifting cultivation. Per cycle change in biomass accumulation rate is significantly more negative in younger forests and forests that experience a shorter fallow period. However, more detailed analyses for two case studies suggest that a purely ecological framework is of limited effectiveness in explaining variability in the effect of repeated shifting cultivation. Rather, socioeconomic factors such as migration, subsidies, roads, and settlement history can alter the outcome of shifting cultivation by limiting the accumulation and use of local knowledge.  相似文献   
998.
Integrins mediate the interaction between cells and extracellular matrix by assembling adhesive structures that need to be dynamically modulated to allow cell motility. We have recently identified liprin-α1 as an essential regulator of integrin dynamics required for efficient cell motility. Here we investigated the effects of liprin-α1 expression on β1 integrin receptors. We found that increased levels of liprin-α1 affected the localization of inactive, low-affinity integrins, while increasing the average size of β1 integrin-positive focal adhesions. Although a direct interaction between β1 integrins and liprin-α1 could not be revealed biochemically, a striking colocalization between redistributed inactive β1 integrins and liprin-α1 was observed. The tight association of overexpressed and endogenous liprin-α1 to the cytoplasmic side of the ventral plasma membrane suggested a possible role of liprin in stabilizing integrin receptors at the cell surface. In support of this hypothesis, we demonstrated an inhibitory effect of liprin overexpression on antibody-induced β1 integrin internalization. On the other hand, depletion of endogenous liprin-α by small interfering RNA increased the rate of integrin internalization. Overall, these results support the hypothesis that liprin-α1 exerts its action on focal adhesion turnover by influencing the localization and stability of integrin receptors at the cell surface.  相似文献   
999.
Trypanosoma cruzi is an obligate intracellular parasite that infects phagocytic and non-phagocytic mammalian cells by a complex process that appears to involve several discrete steps. Even though the infection process was described many years ago, the molecular mechanisms involved remain poorly understood. As fluorescent proteins have proven to be excellent tools for live-cell imaging, we used EGFP- and DsRed1-1-transfected trypomastigotes, amastigotes and epimastigotes to study the infection process in living cells. Contrary to what has been reported, our results showed that epimastigotes are as infective as trypomastigotes and amastigotes. Besides, differences in replication, differentiation and parasite release times were observed among the stages. Our results suggest that the different developmental stages use distinct attachment and invasion mechanisms. We propose that fluorescent-based plasmid expression systems are good models for studying the infection process of intracellular microorganisms and could offers insights about the molecular mechanisms involved.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号