首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   16篇
  国内免费   1篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有98条查询结果,搜索用时 171 毫秒
11.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   
12.
Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.  相似文献   
13.
14.
Plasmodium falciparum NDH2 (pfNDH2) is a non-proton pumping, rotenone-insensitive alternative enzyme to the multi-subunit NADH:ubiquinone oxidoreductases (Complex I) of many other eukaryotes. Recombinantly expressed pfNDH2 prefers coenzyme CoQ0 as an acceptor substrate, and can also use the artificial electron acceptors, menadione and dichlorophenol–indophenol (DCIP). Previously characterized NDH2 inhibitors, dibenziodolium chloride (DPI), diphenyliodonium chloride (IDP), and 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) do not inhibit pfNDH2 activity. Here, we provide evidence that HDQ likely targets another P. falciparum mitochondrial enzyme, dihydroorotate dehydrogenase (pfDHOD), which is essential for de novo pyrimidine biosynthesis.  相似文献   
15.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   
16.
A new spermidine alkaloid, cadabicine, has been isolated from Cadaba farinosa. Its structure was determined by X-ray crystallographic and spectral methods.  相似文献   
17.
Human methionine aminopeptidase type 2 (hMetAP-2) was identified as the molecular target of anti-angiogenic agents such as fumagillin and its analogues. We describe here the crystal structure of hMetAP-2 in complex with l-methionine and d-methionine at 1.9 and 2.0A resolution, respectively. The comparison of the structure of the two complexes establishes the basis of enantiomer discrimination and provides some considerations for the design of selective MetAP-2 inhibitors.  相似文献   
18.
Bacillus cereus UW85 suppresses diseases of alfalfa seedlings, although alfalfa seed exudate inhibits the growth of UW85 in culture (J. L. Milner, S. J. Raffel, B. J. Lethbridge, and J. Handelsman, Appl. Microbiol. Biotechnol. 43:685–691, 1995). In this study, we determined the chemical basis for and biological role of the inhibitory activity. All of the alfalfa germ plasm tested included seeds that released inhibitory material. We purified the inhibitory material from one alfalfa cultivar and identified it as canavanine, which was present in the cultivar Iroquois seed exudate at a concentration of 2 mg/g of seeds. Multiple lines of evidence suggested that canavanine activity accounted for all of the inhibitory activity. Both canavanine and seed exudate inhibited the growth of UW85 on minimal medium; growth inhibition by either canavanine or seed exudate was prevented by arginine, histidine, or lysine; and canavanine and crude seed exudate had the same spectrum of activity against B. cereus, Bacillus thuringiensis, and Vibrio cholerae. The B. cereus UW85 populations surrounding canavanine-exuding seeds were up to 100-fold smaller than the populations surrounding non-canavanine-exuding seeds, but canavanine did not affect the growth of UW85 on seed surfaces. The spermosphere populations of canavanine-resistant mutants of UW85 were larger than the spermosphere populations of UW85, but the mutants and UW85 were similar in spermoplane colonization. These results indicate that canavanine exuded from alfalfa seeds affects the population biology of B. cereus.  相似文献   
19.
We used the cytochrome oxidase subunit I (coI) gene DNA to barcode 117 endemic Gulf and cosmopolitan Indo–West Pacific fish species belonging to 54 families and 13 orders. Novel DNA barcodes were provided for 18 fish species (Trachinocephalus sp., Nematalosa sp., Herklotsichthys lossei, Upeneus doriae, Trachurus indicus, Apogonichthyoides taeniatus, Verulux cypselurus, Favonigobius sp., Suezichthus gracilis, Sillago sp., Brachirus orientalis, Pegusa sp., Lepidotrigla bispinosa, Lepidotrigla sp., Grammoplites suppositus, Hippichthys sp., Paramonacanthus sp. and Triacanthus sp.). The species delimitation analysis, conducted with Poisson tree processes– Bayesian PTP (PTP–bPTP) and nucleotide-divergence-threshold (NDT) models), found 137 and 119 entities respectively. Overall, NDT method, neighbour-joining species tree and the prior taxonomic assessment provided similar results. Among the 54 families considered, only 10 (Ariommatidae, Ephippidae, Leiognathidae, Nemipteridae, Plotosidae, Pomacanthidae, Pomacentridae, Priacanthidae and Rachycentridae) showed the occurrence of molecular diagnostic pure characters. The DNA barcoding database developed during this study will help ichthyologists to identify and resolve the taxonomic ambiguities they may encounter with the fishes occurring in The Gulf and throughout the region.  相似文献   
20.
The transport of hydrophobic insect pheromones through the aqueous medium surrounding their receptors is assisted by pheromone-binding proteins (PBPs). The protein from the silkworm moth Bombyx mori, BmorPBP, exhibits a pH-dependent conformational change postulated to trigger the release of the pheromone bombykol to its receptor. At low pH, an alpha-helix occupies the same binding pocket that houses the pheromone in the BmorPBP-bombykol complex at high pH. We have determined the crystal structure of apo BmorPBP at a resolution of 2.3 angstroms and pH 7.5, which has surprisingly a structure similar to the A-form. These data suggest that BmorPBP undergoes a ligand-dependent conformational change in addition to the previously described pH-dependent conformational change. Analysis of the alpha-helix occupying the binding pocket reveals an amphipathic helix with three acidic residues along one face that are conserved among lepidopteran PBPs and may be involved in a conformational transition of BmorPBP at the receptor membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号