首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9255篇
  免费   624篇
  国内免费   636篇
  2024年   18篇
  2023年   96篇
  2022年   105篇
  2021年   449篇
  2020年   311篇
  2019年   386篇
  2018年   377篇
  2017年   282篇
  2016年   355篇
  2015年   575篇
  2014年   677篇
  2013年   740篇
  2012年   833篇
  2011年   772篇
  2010年   452篇
  2009年   422篇
  2008年   478篇
  2007年   408篇
  2006年   368篇
  2005年   312篇
  2004年   264篇
  2003年   240篇
  2002年   189篇
  2001年   176篇
  2000年   152篇
  1999年   143篇
  1998年   105篇
  1997年   96篇
  1996年   85篇
  1995年   73篇
  1994年   82篇
  1993年   66篇
  1992年   71篇
  1991年   66篇
  1990年   66篇
  1989年   51篇
  1988年   32篇
  1987年   35篇
  1986年   22篇
  1985年   27篇
  1984年   10篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop.  相似文献   
992.
993.
994.
995.
Insect guts represent unique natural biocatalyst systems for biocatalyst discovery and biomass deconstruction mechanism studies. In order to guide the further research for enzyme discovery and biodiversity analysis, we carried out comprehensive xylanase and cellulase activity assays for the gut contents of three insect species representing different orders and food sources. The three insect species are grasshopper (Acrididae sp.), woodborer (Cerambycidae spp.), and silkworm (Bombyx mori) to represent the wood-consuming, grass-consuming, and leaf-consuming insects from Orthoptera, Coleoptera, and Lepidoptera orders, respectively. Generally speaking, the enzyme activity assays have shown that the cellulase and xylanase activities for grasshopper and woodborer guts are significantly higher than those of silkworm under various conditions. In addition, both pH and temperature have a significant impact on the enzyme activities in the gut contents. For the grasshopper gut, the means of xylanase and cellulase activities at pH 7 were 3,397 and 404 μM mg?1 min?1, which are significantly higher than the activities at pH 4 and 10 (P?<?0.05). However, woodborer guts have shown the highest cellulase activity at pH 10. The results suggested that systems similar to woodborer guts could be good resources for discovering alkaline-tolerant enzymes. Moreover, the enzyme activities in response to different substrate concentrations were also analyzed, which indicated that grasshopper gut had particularly high cellulase activity. The enzyme activities in response to the reaction time were also examined, and we found that the enzyme activities (micromolar per milligram per minute) of different insect gut juices in response to the increase of incubation time fit well to the power function equation (E c = K ? t b ) with high coefficients (r 2?>?0.99). The newly developed model serves well to compare the characteristics of the enzyme mixtures among different insect species, which can be applied to other studies of natural biocatalyst systems for the future. Overall, the data indicated that grasshopper and woodborer guts are valuable resources for discovering the novel biocatalysts for various biorefinery applications.  相似文献   
996.
MicroRNAs (miRNAs) are non-coding, single-stranded RNAs of approximately 22 nt and constitute a novel class of gene regulators that are found in both plants and animals. Several studies have demonstrated that serum miRNAs could serve as potential biomarkers for the detection of various cancers and other diseases. A few documents regarding the stability of liver cancer-related miRNAs in serum are available. A systemic analysis of the stability of miRNA in serum is quite necessary. The purpose of this study was to evaluate the stability of miRNAs from three different sources, cultured liver cancer Huh-7 cell line, clinical liver cancer, and serum under different experimental conditions, including different temperature, time duration, pH values, RNase A digestion, DNase I digestion, and various freeze-thaw cycles. The qRT-PCR analysis demonstrated that liver cancer-related miRNAs were detectable under each of test conditions, indicating that miRNAs were extremely stable and resistant to destruction and degradation under harsh environmental conditions. However, ribosomal RNA was fragile and easily degraded by demonstrating sharp decrease of relative expression under the non-physiological test conditions. We also established a robust procedure for serum RNA extraction, which is greatly important not only for the miRNA profiling studies but also for the disease prognosis based on abnormal miRNA expression.  相似文献   
997.
998.
999.
Chen Y  Ding Y  Zhang Z  Wang W  Chen JY  Ueno N  Mao B 《遗传学报》2011,38(12):577-584
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes.  相似文献   
1000.
2008年至2009年间,在湖南和湖北两省的活禽市场中分离到了14株H6亚型禽流感病毒,为了解这14株病毒之间的分子特征和差异,我们运用PCR和测序鉴定对这14株病毒的NA基因进行了分型,并对其表面基因HA和NA进行序列测定及序列分析.14株H6亚型病毒中,H6N2亚型12株,H6N6亚型2株.序列测定和进化分析结果显示:DK/HN/284的HA基因与其它13株的HA差异性较大,差异性达到19.4%~20.2%,其余13株毒同源性在94.2%~99.9%;N2亚型NA基因的同源性在91.1%~99.9%,差异性比较大;两株N6亚型NA基因同源性为89.5%,差异明显.这些数据表明:不同毒株呈现一定的地域性差异.与我国周边其它地区的H6亚型禽流感毒株序列进行比较发现,只有DK/HN/284的HA基因与香港早期的毒株可能有着共同的来源,其余都与香港和韩国等的毒株有着较大的差异性,并且各个毒株的HA基因上潜在的糖基化位点和受体结合位点也有所不同,这些数据表明,这些毒株表现出明显的异源性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号