首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48609篇
  免费   3977篇
  国内免费   2397篇
  2023年   436篇
  2022年   558篇
  2021年   2044篇
  2020年   1279篇
  2019年   1601篇
  2018年   1553篇
  2017年   1190篇
  2016年   1850篇
  2015年   2780篇
  2014年   3262篇
  2013年   3511篇
  2012年   4112篇
  2011年   3933篇
  2010年   2280篇
  2009年   2110篇
  2008年   2520篇
  2007年   2290篇
  2006年   1985篇
  2005年   1806篇
  2004年   1593篇
  2003年   1398篇
  2002年   1208篇
  2001年   1148篇
  2000年   979篇
  1999年   924篇
  1998年   510篇
  1997年   542篇
  1996年   497篇
  1995年   446篇
  1994年   413篇
  1993年   335篇
  1992年   514篇
  1991年   460篇
  1990年   377篇
  1989年   300篇
  1988年   279篇
  1987年   242篇
  1986年   173篇
  1985年   220篇
  1984年   153篇
  1983年   120篇
  1982年   100篇
  1981年   77篇
  1980年   71篇
  1979年   91篇
  1978年   87篇
  1977年   69篇
  1976年   72篇
  1974年   55篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 845 毫秒
991.
992.
993.
994.
Trichoderma harzianum is a plant-beneficial fungus that secretes small cysteine-rich proteins that induce plant defense responses; however, the molecular mechanism involved in this induction is largely unknown.Here, we report that the class II hydrophobin Th Hyd1 acts as an elicitor of induced systemic resistance(ISR) in plants. Immunogold labeling and immunofluorescence revealed Th Hyd1 localized on maize(Zea mays) root cell plasma membranes. To identify host plant protein interactors of Hyd1, we screened a maize B73 root c DNA library. Th Hyd1 interacted directly with ubiquilin1-like(UBL). Furthermore, the N-terminal fragment of UBL was primarily responsible for binding with Hyd1 and the eight-cysteine amino acid of Hyd1 participated in the protein-protein interactions. Hyd1 from T. harzianum(Thhyd1) and ubl from maize were co-expressed in Arabidopsis thaliana, they synergistically promoted plant resistance against Botrytis cinerea. RNA-sequencing analysis of global gene expression in maize leaves 24 h after spraying with Curvularia lunata spore suspension showed that Thhyd1-induced systemic resistance was primarily associated with brassinosteroid signaling, likely mediated through BAK1. Jasmonate/ethylene(JA/ET)signaling was also involved to some extent in this response. Our results suggest that the Hyd1-UBL axis might play a key role in inducing systemic resistance as a result of Trichoderma-plant interactions.  相似文献   
995.
996.
997.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   
998.
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane‐localized legume‐lectin receptor kinase that we named OsLecRK‐S.7. OsLecRK‐S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK‐S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376, Ser378, Thr386, Thr403, and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk‐s.7 mutant plant overexpressing OsLecRK‐S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK‐S.7 was a key regulator of pollen development.  相似文献   
999.
Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear.In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng,enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole-3-acetic acid(IAA) and jasmonic acid(JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate(Me JA)(2–15 μmol/L) and 1-naphthalenacetic acid(NAA)(10–20 μmol/L). Moreover, the roots of the JA signaling-defective coi1-18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild-type Nipponbare and mi R393 boverexpressing lines, and the colonization was rescued by Me JA but not by NAA. It suggests that the cross-talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.  相似文献   
1000.
Root stem cell niche (SCN) consists of a quiescent center (QC) and surrounding stem cells. Disrupted symplastic communication leads to loss of stemness in the whole SCN. Several SCN regulators were reported to move between cells for SCN maintenance. However, single mutant of these regulators is insufficient to abolish QC stemness despite the high differentiation rate in surrounding stem cells. To dissect the mechanism behind such distinct stemness in SCN, we combined the mis‐expression strategy with pWOX5:icals3m system in which QC is symplastically isolated. We found the starch accumulation in QC could be synergistically repressed by WUSCHEL‐RELATED HOMEOBOX 5 (WOX5), SHORT‐ROOT (SHR), SCARCROW (SCR), and PLETHORA (PLT). Like PLTs, other core regulators also exhibited dimorphic functions by inhibiting differentiation at a higher dose while promoting cell division at a low protein level. Being located in the center of the intersected expression zones, QC cells receive the highest level of core regulators, forming the most robust stemness within SCN. WUSCHEL‐RELATED HOMEOBOX 5 was sufficient to activate PLT1/2 expression, contributing to the QC‐enriched PLTs. Our results provide experimental evidence supporting the long‐standing hypothesis that the combination of spatial expression, synergistic function and dosage effect of core regulators result in spatially distinct stemness in SCN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号