首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7817篇
  免费   664篇
  国内免费   7篇
  2023年   19篇
  2022年   32篇
  2021年   122篇
  2020年   63篇
  2019年   110篇
  2018年   153篇
  2017年   113篇
  2016年   238篇
  2015年   368篇
  2014年   424篇
  2013年   437篇
  2012年   553篇
  2011年   562篇
  2010年   349篇
  2009年   328篇
  2008年   450篇
  2007年   434篇
  2006年   395篇
  2005年   399篇
  2004年   400篇
  2003年   349篇
  2002年   313篇
  2001年   304篇
  2000年   242篇
  1999年   215篇
  1998年   78篇
  1997年   81篇
  1996年   59篇
  1995年   57篇
  1994年   39篇
  1993年   27篇
  1992年   77篇
  1991年   83篇
  1990年   51篇
  1989年   54篇
  1988年   46篇
  1987年   44篇
  1986年   32篇
  1985年   36篇
  1984年   34篇
  1982年   21篇
  1980年   17篇
  1979年   19篇
  1978年   22篇
  1977年   23篇
  1976年   24篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
  1970年   17篇
排序方式: 共有8488条查询结果,搜索用时 93 毫秒
911.
PEG1/MEST is a paternally expressed gene in placental mammals. Here, we report identification of zebrafish (Danio rerio) gene mest, an ortholog of mammalian PEG1/MEST. Zebrafish mest encodes a polypeptide of 344 amino acids and shows a significant similarity to mammalian orthologs. Zebrafish mest is present as a single copy in the zebrafish genome and is closely linked to copg2 as in mammals. It is notable that 10 of 11 intron positions in mest are conserved among mammalian PEG1/MEST genes, indicating that the genomic organization and linkage between mest and copg2 loci was established in ancient vertebrates. Zebrafish mest is expressed in blastula, segmentation, and larval stages, exhibiting gradually increased expression as the development proceeds. Allelic expression analysis in hybrid larvae shows that both parental alleles are transcribed. We also observed one-codon alternative splicing involving an alternative usage of the two consecutive splice acceptors of intron 1, generating two protein isoforms with different lengths of a single amino acid.  相似文献   
912.
The seed-specific or seed-predominant promoters of acyl carrier protein (Cs-ACP1) and Delta4-palmitoyl-acyl carrier protein desaturase (Cs-4PAD) genes, which are involved in the biosynthesis of petroselinic acid, were isolated from coriander (Coriandrum sativum) and analyzed in coriander endosperms and transgenic Arabidopsis. The expression of Cs-ACP1 and Cs-4PAD genes was coordinately regulated during seed development.  相似文献   
913.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   
914.
915.
Phosphatidylcholine (PC)-specific phospholipase D (PC-PLD) and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) activities have been detected in Uronema marinum. Partial purification of PC-PLC revealed that two distinct forms of PC-PLC (named as mPC-PLC and cPC-PLC) were existed in membrane and cytosol fractions. The two PC-PLC enzymes showed the preferential hydrolyzing activity for PC with specific activity of 50.4 for mPC-PLC and 28.3 pmol/min/mg for cPC-PLC, but did not hydrolyze phosphatidylinositol or phosphatidylethanolamine. However, the biochemical characteristics and physiological roles of both enzymes were somewhat different. mPC-PLC had a pH optimum in the acidic region at around, pH 6.0, and required approximately 0.4 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC had a pH optimum in the neutral region at around, pH 7.0, and required 1.6 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC, but not mPC-PLC, showed a dose-dependent inhibitory effect on the luminal-enhanced chemiluminescence (CL) responses and the viability of zymosan-stimulated phagocytes of olive flounder, indicating that cPC-PLC may contribute to the parasite evasion against the host immune response. Our results suggest that U. marinum contains PC-PLD as well as two enzymatically distinct PC-PLC enzymes, and that mPC-PLC may play a role in the intercellular multiplication of U. marinum and cPC-PLC acts as a virulence factor, serving to actively disrupt the host defense mechanisms.  相似文献   
916.
Chow KY  Yeung YS  Hon CC  Zeng F  Law KM  Leung FC 《FEBS letters》2005,579(30):6699-6704
The pro-apoptotic properties of severe acute respiratory syndrome coronavirus (SARS-CoV) structural proteins were studied in vitro. By monitoring apoptosis indicators including chromatin condensation, cellular DNA fragmentation and cell membrane asymmetry, we demonstrated that the adenovirus-mediated over-expression of SARS-CoV spike (S) protein and its C-terminal domain (S2) induce apoptosis in Vero E6 cells in a time- and dosage-dependent manner, whereas the expression of its N-terminal domain (S1) and other structural proteins, including envelope (E), membrane (M) and nucleocapsid (N) protein do not. These findings suggest a possible role of S and S2 protein in SARS-CoV induced apoptosis and the molecular pathogenesis of SARS.  相似文献   
917.
Two targeted chromogenic octapeptide combinatorial libraries, comprised of 38 pools each containing 361 different peptides, were used to analyze the enzyme/substrate interactions of five plasmepsins. The first library (P1 library) was based on a good synthetic aspartic peptidase substrate [Westling, J., Cipullo, P., Hung, S. H., Saft, H., Dame, J. B., and Dunn, B. M. (1999) Protein Sci. 8, 2001-2009; Scarborough, P. E., and Dunn, B. M. (1994) Protein Eng. 7, 495-502] and had the sequence Lys-Pro-(Xaa)-Glu-P1*Nph-(Xaa)-Leu. The second library (P1' library) incorporated results with the plasmepsins from the first library and had the sequence Lys-Pro-Ile-(Xaa)-Nph*P1'-Gln-(Xaa). In both cases, P1 and P1' were fixed residues for a given peptide pool, where Nph was a para-nitrophenylalanine chromogenic reporter and Xaa was a mixture of 19 different amino acids. Kinetic assays monitoring the rates of cleavage of these libraries revealed the optimal P1 and P1' residues for the five plasmepsins as hydrophobic substitutions. Extended specificity preferences were obtained utilizing liquid chromatography-mass spectrometry (LC-MS) to analyze the cleavage products produced by enzyme-catalyzed digestion of the best pools of each peptide library. LC-MS analysis of the P1-Phe and P1'-Phe pools revealed the favored amino acids at the P3, P2, P2', and P3' positions. These analyses have provided new insights on the binding preferences of malarial digestive enzymes that were used to design specific methyleneamino peptidomimetic inhibitors of the plasmepsins. Some of these compounds were potent inhibitors of the five plasmepsins, and their possible binding modes were analyzed by computational methods.  相似文献   
918.
A mannose-binding C-type lectin (MBL) was isolated by affinity chromatography from Heliothis virescens immune pupal hemolymph. The immune pupal hemolymph was obtained after bacterial injection of live Enterobacter cloacae bacteria. MBL in mammals acts as an opsonin for phagocytosis and activates the lectin complement pathway of the innate immune response, which leads to killing of gram-negative bacteria and enveloped viruses. The affinity-purified and reduced pupal MBL showed a single band of 36 kDa by SDS-PAGE (12% gel). A dot-immunoblot ELISA (using guinea pig anti-MBL IgG as primary antibody) demonstrated specificity of the antibody for the affinity-purified pupal MBL. The immune pupal hemolymph contained 21 microg of MBL per ml of hemolymph. The amino acid composition of the purified pupal MBL was determined with high amounts of arginine and histidine detected. The presence of MBL in insect pupae has not before been reported and could be important in pupal innate immunity to bacterial infection.  相似文献   
919.
The role of NKT cells during immune responses is diverse, ranging from antiviral and antitumor activity to the regulation of autoimmune diseases; however, the regulatory function of CD1d-dependent NKT cells in rejection responses against allogeneic graft is uncertain. In this study, we demonstrated the direct regulatory effects of CD1d-dependent NKT cells using an allogeneic skin transplantation model. H-Y-mismatched skin graft survival was shortened in CD1d-/- recipients compared with wild-type recipients. Adoptive transfer of syngeneic NKT cells via splenocytes or hepatic mononuclear cells into CD1d-/- recipients restored graft survival times to those of wild-type recipients. alpha-Galactosylceramide, a specific activator of NKT cells, further prolonged graft survival. Although CD1d-dependent NKT cells did not extend skin graft survival in either major or complete minor histocompatibility-mismatched models, these cells affected graft survival in minor Ag mismatch models according to the magnitude of the antigenic difference. The afferent arm of NKT cell activation during transplantation required CD1d molecules expressed on host APCs and the migration of CD1d-dependent NKT cells into grafts. Moreover, the regulatory effects of CD1d-dependent NKT cells against alloantigen were primarily IL-10 dependent. Taken together, we concluded that CD1d-dependent NKT cells may directly affect the outcome of allogeneic skin graft through an IL-10-dependent regulatory mechanism.  相似文献   
920.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号