首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7790篇
  免费   661篇
  国内免费   6篇
  2023年   19篇
  2022年   32篇
  2021年   122篇
  2020年   63篇
  2019年   109篇
  2018年   153篇
  2017年   113篇
  2016年   237篇
  2015年   364篇
  2014年   424篇
  2013年   436篇
  2012年   551篇
  2011年   560篇
  2010年   348篇
  2009年   329篇
  2008年   450篇
  2007年   433篇
  2006年   393篇
  2005年   396篇
  2004年   399篇
  2003年   349篇
  2002年   313篇
  2001年   303篇
  2000年   242篇
  1999年   214篇
  1998年   76篇
  1997年   80篇
  1996年   58篇
  1995年   57篇
  1994年   37篇
  1993年   27篇
  1992年   77篇
  1991年   83篇
  1990年   50篇
  1989年   54篇
  1988年   46篇
  1987年   44篇
  1986年   32篇
  1985年   35篇
  1984年   33篇
  1982年   20篇
  1981年   17篇
  1979年   19篇
  1978年   22篇
  1977年   23篇
  1976年   24篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
  1970年   18篇
排序方式: 共有8457条查询结果,搜索用时 15 毫秒
971.
Because systole and diastole are coupled and systolic ventricular-vascular coupling has been characterized, we hypothesize that diastolic ventricular-vascular coupling (DVVC) exists and can be characterized in terms of relaxation and stiffness. To characterize and elucidate DVVC mechanisms, we introduce time derivative of pressure (dP/dt) vs. time-varying pressure [P(t)] (pressure phase plane, PPP)-derived analogs of ventricular and vascular "stiffness" and relaxation parameters. Although volume change (dV) = 0 during isovolumic periods, and time-varying left ventricular (LV) stiffness, typically expressed as change in pressure per unit change in volume (dP/dV), is undefined, our formulation allows determination of a PPP-derived stiffness analog during isovolumic contraction and relaxation. Similarly, an aortic stiffness analog is also derivable from the PPP. LV relaxation was characterized via tau, the time constant of isovolumic relaxation, and vascular (aortic pressure decay) relaxation was characterized in terms of its equivalent (windkessel) exponential decay time constant kappa. The results show that PPP-derived systolic and diastolic ventricular and vascular stiffness are strongly coupled [K(Ao)(+)=1.71(K(LV)(+)) +154, r=0.86; K(Ao)(-)=0.677(K(LV)(-))-5.53, r=0.86]. In support of the DVVC hypothesis, a strong linear correlation between relaxation (rate of pressure decay) indexes kappa and tau (kappa = 9.89tau - 90.3, r = 0.81) was also observed. The correlations observed underscore the role of long-term, steady-state DVVC as a diastolic function determinant. Awareness of the PPP-derived DVVC parameters provides insight into mechanisms and facilitates quantification of arterial stiffening and associated increase in diastolic chamber stiffness. The PPP method provides a tool for quantitative assessment and determination of the functional coupling of the vasculature to diastolic function.  相似文献   
972.
Thiazolidinediones (TZDs), synthetic peroxisome proliferator-activated receptor (PPAR) ligands, have been implicated in the inhibition of protein synthesis in a variety of cells, but the underlying mechanisms remain obscure. We report that troglitazone, the first TZD drug, acutely inhibited protein synthesis by decreasing p70 S6 kinase (p70S6K) activity in bovine aortic endothelial cells (BAEC). This inhibition was not accompanied by decreased phosphorylation status or in vitro kinase activity of mammalian target of rapamycin (mTOR). Furthermore, cotreatment with rapamycin, a specific mTOR inhibitor, and troglitazone additively inhibited both p70S6K activity and protein synthesis, suggesting that the inhibitory effects of troglitazone are not mediated by mTOR. Overexpression of the wild-type p70S6K gene significantly reversed the troglitazone-induced inhibition of protein synthesis, indicating an important role of p70S6K. Okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, partially reversed the troglitazone-induced inhibition of p70S6K activity and protein synthesis. Although troglitazone did not alter total cellular PP2A activity, it increased the physical association between p70S6K and PP2A, suggesting an underlying molecular mechanism. GW9662, a PPAR antagonist, did not alter any of the observed inhibitory effects. Finally, we also found that the mTOR-independent inhibitory mechanism of troglitazone holds for the TZDs ciglitazone, pioglitazone, and rosiglitazone, in BAEC and other types of endothelial cells tested. In conclusion, our data demonstrate for the first time that troglitazone (and perhaps other TZDs) acutely decreases p70S6K activity through a PP2A-dependent mechanism that is independent of mTOR and PPAR, leading to the inhibition of protein synthesis in endothelial cells. protein synthesis  相似文献   
973.
1-Methyl-4-phenylpyridinium (MPP+) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP+-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP+ or 6-OHDA evoked the elevation of intracellular Ca2+ levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca2+ levels due to both toxins. The results show that the MPP+-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca2+ levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca2+-independent manner.  相似文献   
974.
975.
Enlarged or giant mitochondria have often been documented in aged tissues although their role and underlying mechanism remain unclear. We report here how highly elongated giant mitochondria are formed in and related to the senescent arrest. The mitochondrial morphology was progressively changed to a highly elongated form during deferoxamine (DFO)-induced senescent arrest of Chang cells, accompanied by increase of intracellular ROS level and decrease of mtDNA content. Interestingly, under exposure to subcytotoxic doses of H2O2 (200 microM), about 65% of Chang cells harbored elongated mitochondria with senescent phenotypes whereas ethidium bromide (EtBr) (50 ng/ml) only reformed the cristae structure. Elongated giant mitochondria were also observed in TGF beta1- or H2O2-induced senescent Mv1Lu cells and in old human diploid fibroblasts (HDFs). In all senescent progresses employed in this study Fis1 protein, a mitochondrial fission modulator, was commonly downexpressed. Overexpression of YFP-Fis1 reversed both mitochondrial elongation and appearance of senescent phenotypes induced by DFO, implying its critical involvement in the arrest. Finally, we found that direct induction of mitochondrial elongation by blocking mitochondrial fission process with Fis1-DeltaTM or Drp1-K38A was sufficient to develop senescent phenotypes with increased ROS production. These data suggest that mitochondrial elongation may play an important role as a mediator in stress-induced premature senescence.  相似文献   
976.
The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-beta fibrils (fAbeta), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Abeta (sAbeta) could degrade fAbeta as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAbeta and that this ability is not shared by other sAbeta-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAbeta was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAbeta breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAbeta were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Abeta that are cleaved during its degradation. Only MMP-9 digests contained fragments (Abeta(1-20) and Abeta(1-30)) from fAbeta(1-42) substrate; the corresponding cleavage sites are thought to be important for beta-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAbeta and may contribute to ongoing clearance of plaques from amyloid-laden brains.  相似文献   
977.
Botulinum neurotoxin A (BoNT/A) has been used therapeutically to treat muscular hypercontractions and sudomotor hyperactivity and it has been reported that BoNT/A might have analgesic properties in headache. PEP-1 peptide is a known carrier peptide that delivers full-length native proteins in vitro and in vivo. In this study, a BoNT/A gene were fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-BoNT/A fusion protein. The expressed and purified PEP-1-BoNT/A fusion proteins were efficiently transduced into cells in a time- and dose-dependent manner when added exogenously in a culture medium. In addition, immunohistochemical analysis revealed that PEP-1-BoNT/A fusion protein efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin. These results suggest that PEP-1-BoNT/A fusion protein provide an efficient strategy for therapeutic delivery in various human diseases related to this protein.  相似文献   
978.
2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinantEscherichia coli andSaccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.  相似文献   
979.
This study sought to characterize the reduced glutathione (GSH)/oxidized GSSG ratio during osteoclast differentiation and determine whether changes in the intracellular redox status regulate its differentiation through a RANKL-dependent signaling pathway. A progressive decrease of the GSH/GSSG ratio was observed during osteoclast differentiation, and the phenomenon was dependent on a decrease in total glutathione via downregulation of expression of the gamma-glutamylcysteinyl synthetase modifier gene. Glutathione depletion by L-buthionine-(S,R)-sulfoximine (BSO) was found to inhibit osteoclastogenesis by blocking nuclear import of NF-kappaB and AP-1 in RANKL-propagated signaling and bone pit formation by increasing BSO concentrations in mature osteoclasts. Furthermore, intraperitoneal injection of BSO in mice resulted in an increase in bone density and a decrease of the number of osteoclasts in bone. Conversely, glutathione repletion with either N-acetylcysteine or GSH enhanced osteoclastogenesis. These findings indicate that redox status decreases during osteoclast differentiation and that this modification directly regulates RANKL-induced osteoclastogenesis.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号