首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   131篇
  国内免费   73篇
  2024年   1篇
  2023年   8篇
  2022年   9篇
  2021年   39篇
  2020年   33篇
  2019年   40篇
  2018年   41篇
  2017年   40篇
  2016年   47篇
  2015年   60篇
  2014年   66篇
  2013年   60篇
  2012年   98篇
  2011年   78篇
  2010年   47篇
  2009年   46篇
  2008年   47篇
  2007年   26篇
  2006年   44篇
  2005年   32篇
  2004年   38篇
  2003年   48篇
  2002年   32篇
  2001年   35篇
  2000年   25篇
  1999年   25篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   14篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有1165条查询结果,搜索用时 578 毫秒
31.
Pretreatment of rice straw by using renewable cholinium amino acids ionic liquids ([Ch][AA] ILs)‐water mixtures and the subsequent enzymatic hydrolysis of the residues were conducted in the present work. Of the eight mixtures composed of ILs and water, most were found to be effective for rice straw pretreatment. After pretreatment with 50% ILs‐water mixtures, the enzymatic digestion of the lignocellulosic biomass was enhanced significantly, thus leading to satisfactory sugar yields of >80% for glucose and approximately 50% for xylose. To better understand the ILs pretreatment mechanism, confocal laser scanning microscopy combined with immunolabeling and transmission electron microscopy were used to visualize changes in the contents and distribution of two major components—lignin and xylan. The results coupled with changes in chemical structures (infrared spectra) of the substrates indicated occurrence of extensive delignification, especially in cell corner and compound middle lumen of cell walls, which made polysaccharides more accessible to enzymes. This pretreatment process is promising for large‐scale application because of the high sugar yields, easy handling, being environmentally benign and highly tolerant to moisture, and significantly reduced cost and energy consumption. Biotechnol. Bioeng. 2013; 110: 1895–1902. © 2013 Wiley Periodicals, Inc.  相似文献   
32.
33.
34.
35.
36.
Incomplete tear film spreading and eyelid closure can cause defective renewal of the ocular surface and air exposure‐induced epithelial keratopathy (EK). In this study, we characterized the role of autophagy in mediating the ocular surface changes leading to EK. Human corneal epithelial cells (HCECs) and C57BL/6 mice were employed as EK models, respectively. Transmission electron microscopy (TEM) evaluated changes in HCECs after air exposure. Each of these models was treated with either an autophagy inhibitor [chloroquine (CQ) or 3‐methyladenine (3‐MA)] or activator [Rapamycin (Rapa)]. Immunohistochemistry assessed autophagy‐related proteins, LC3 and p62 expression levels. Western blotting confirmed the expression levels of the autophagy‐related proteins [Beclin1 and mammalian target of rapamycin (mTOR)], the endoplasmic reticulum (ER) stress‐related proteins (PERK, eIF2α and CHOP) and the PI3K/Akt/mTOR signalling pathway‐related proteins. Real‐time quantitative PCR (qRT‐PCR) determined IL‐1β, IL‐6 and MMP9 gene expression levels. The TUNEL assay detected apoptotic cells. TEM identified autophagic vacuoles in both EK models. Increased LC3 puncta formation and decreased p62 immunofluorescent staining and Western blotting confirmed autophagy induction. CQ treatment increased TUNEL positive staining in HCECs, while Rapa had an opposite effect. Similarly, CQ injection enhanced air exposure‐induced apoptosis and inflammation in the mouse corneal epithelium, which was inhibited by Rapa treatment. Furthermore, the phosphorylation status of PERK and eIF2α and CHOP expression increased in both EK models indicating that ER stress‐induced autophagy promoted cell survival. Taken together, air exposure‐induced autophagy is indispensable for the maintenance of corneal epithelial physiology and cell survival.  相似文献   
37.
Gao  Lin  Liu  Xin-min  Du  Yong-mei  Zong  Hao  Shen  Guo-ming 《Annals of microbiology》2019,69(13):1531-1536
A reasonable cultivation pattern is beneficial to maintain soil microbial activity and optimize the structure of the soil microbial community. To determine the effect of tobacco−peanut (Nicotiana tabacum−Arachis hypogaea) relay intercropping on the microbial community structure in soil, we compared the effects of relay intercropping and continuous cropping on the soil bacteria community structure. We collected soil samples from three different cropping patterns and analyzed microbial community structure and diversity using high-throughput sequencing technology. The number of operational taxonomic units (OTU) for bacterial species in the soil was maximal under continuous peanut cropping. At the phylum level, the main bacteria identified in soil were Proteobacteria, Actinobacteria, and Acidobacteria, which accounted for approximately 70% of the total. The proportions of Actinobacteria and Firmicutes increased, whereas the proportion of Proteobacteria decreased in soil with tobacco–peanut relay intercropping. Moreover, the proportions of Firmicutes and Proteobacteria among the soil bacteria further shifted over time with tobacco–peanut relay intercropping. At the genus level, the proportions of Bacillus and Lactococcus increased in soil with tobacco–peanut relay intercropping. The community structure of soil bacteria differed considerably with tobacco–peanut relay intercropping from that detected under peanut continuous cropping, and the proportions of beneficial bacteria (the phyla Actinobacteria and Firmicutes, and the genera Bacillus and Lactococcus) increased while the proportion of potentially pathogenic bacteria (the genera Variibacter and Burkholderia) decreased. These results provide a basis for adopting tobacco–peanut relay intercropping to improve soil ecology and microorganisms, while making better use of limited cultivable land.  相似文献   
38.
39.
A power conversion efficiency (PCE) as high as 19.7% is achieved using a novel, low‐cost, dopant‐free hole transport material (HTM) in mixed‐ion solution‐processed perovskite solar cells (PSCs). Following a rational molecular design strategy, arylamine‐substituted copper(II) phthalocyanine (CuPc) derivatives are selected as HTMs, reaching the highest PCE ever reported for PSCs employing dopant‐free HTMs. The intrinsic thermal and chemical properties of dopant‐free CuPcs result in PSCs with a long‐term stability outperforming that of the benchmark doped 2,2′,7,7′‐Tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐Spirobifluorene (Spiro‐OMeTAD)‐based devices. The combination of molecular modeling, synthesis, and full experimental characterization sheds light on the nanostructure and molecular aggregation of arylamine‐substituted CuPc compounds, providing a link between molecular structure and device properties. These results reveal the potential of engineering CuPc derivatives as dopant‐free HTMs to fabricate cost‐effective and highly efficient PSCs with long‐term stability, and pave the way to their commercial‐scale manufacturing. More generally, this case demonstrates how an integrated approach based on rational design and computational modeling can guide and anticipate the synthesis of new classes of materials to achieve specific functions in complex device structures.  相似文献   
40.
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive‐stranded RNAs. Here, we have established a BNYVV full‐length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV‐based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co‐localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV‐based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV‐based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号