首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  1998年   2篇
  1997年   1篇
排序方式: 共有74条查询结果,搜索用时 187 毫秒
51.
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired PO2 approximately 76 Torr) or maintained them in Denver (Den, inspired PO2 approximately 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.  相似文献   
52.
We demonstrate the applicability of sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions (click chemistry) for the immobilization of carbohydrates and proteins onto a solid surface. An alpha,omega-poly(ethylene glycol) (PEG) linker carrying alkyne and cyclodiene terminal groups was synthesized and immobilized onto an N-(epsilon-maleimidocaproyl) (EMC)-functionalized glass slide via an aqueous Diels-Alder reaction. In the process, an alkyne-terminated PEGylated surface was provided for the conjugation of azide-containing biomolecules via click chemistry, which proceeded to completion at low temperature and in aqueous solvent. As anticipated, alkyne, azide, cyclodiene, and EMC are independently stable and do not react with common organic reagents nor functional groups in biomolecules. Given an appropriate PEG linker, sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions provide an effective strategy for the immobilization of a wide range of functionally complex substances onto solid surfaces.  相似文献   
53.
The endogenous lipid signaling agent oleoylethanolamide (OEA) has recently been described as a peripherally acting agent that reduces food intake and body weight gain in rat feeding models. This paper presents evidence that OEA is an endogenous ligand of the orphan receptor GPR119, a G protein-coupled receptor (GPCR) expressed predominantly in the human and rodent pancreas and gastrointestinal tract and also in rodent brain, suggesting that the reported effects of OEA on food intake may be mediated, at least in part, via the GPR119 receptor. Furthermore, we have used the recombinant receptor to discover novel selective small-molecule GPR119 agonists, typified by PSN632408, which suppress food intake in rats and reduce body weight gain and white adipose tissue deposition upon subchronic oral administration to high-fat-fed rats. GPR119 therefore represents a novel and attractive potential target for the therapy of obesity and related metabolic disorders.  相似文献   
54.
55.
The addition of hydroxyurea after the onset of S phase allows replication to start and permits the successive detecting of replication-dependent joint DNA molecules and chicken foot structures in the synchronous nuclei of Physarum polycephalum. We find evidence for a very high frequency of reversed replication forks upon replication stress. The formation of these reversed forks is dependent on the presence of joint DNA molecules, the impediment of the replication fork progression by hydroxyurea, and likely on the propensity of some replication origins to reinitiate replication to counteract the action of this compound. As hydroxyurea treatment enables us to successively detect the appearance of joint DNA molecules and then of reversed replication forks, we propose that chicken foot structures are formed both from the regression of hydroxyurea-frozen joint DNA molecules and from hydroxyurea-stalled replication forks. These experiments underscore the transient nature of replication fork regression, which becomes detectable due to the hydroxyurea-induced slowing down of replication fork progression.  相似文献   
56.
The principal antitumor immune response is mediated through the activation of type 1 cytotoxic (Tc1) CD8 T cells, NK cells, and monocytes/macrophages. In this study, we investigated the potency of a clinical-grade soluble form of lymphocyte activation gene-3 protein (IMP321), a physiological high-affinity MHC class II binder, at inducing in PBMCs an appropriate cytotoxic-type response in short-term ex vivo assays. We found that IMP321 binds to a minority (<10%) of MHC class II + cells in PBMCs, including all myeloid dendritic cells, and a small fraction of monocytes. Four hours after addition of IMP321 to PBMCs, these myeloid cells produce TNF-alpha and CCL4 as determined by intracellular staining. At 18 h, 1% of CD8+ T cells and 3.7% NK cells produce Tc1 cytokines such as IFN-gamma and/or TNF-alpha (mean values from 60 blood donors). Similar induction was observed in metastatic cancer patient PBMCs, but the values were lower for the NK cell subset. Early APC activation by IMP321 is needed for this Tc1-type activation because pure sorted CD8+ T cells could not be activated by IMP321. Only Ag-experienced, fully differentiated granzyme+ CD8 T cells (effector and effector memory but not naive or central memory T cells) are induced by IMP321 to full Tc1 activation. In contrast to IMP321, TLR1-9 agonists induce IL-10 and are therefore unable to induce this Tc1 IFN-gamma+ response. Thus, IMP321 has many properties that confirm its potential to be a new class of immunopotentiator in cancer patients.  相似文献   
57.
58.
Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans.  相似文献   
59.
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis.  相似文献   
60.
Numerous β-defensins have been identified in birds, and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian β-defensins, and this study was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D-proteins clearly indicates that there is no chiral partner. Therefore, the bacterial membrane is in all likelihood the primary target. Moreover, this work indicates that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural three-stranded antiparallel β-sheet characteristic of β-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of the avian β-defensin family was analyzed. Well conserved residues were highlighted, and the potential strategic role of the lysine 31 residue of AvBD2 was emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号